
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Using reconfigurable computing technology to
accelerate matrix decomposition and applications
Xinying Wang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wang, Xinying, "Using reconfigurable computing technology to accelerate matrix decomposition and applications" (2016). Graduate
Theses and Dissertations. 15834.
https://lib.dr.iastate.edu/etd/15834

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15834?utm_source=lib.dr.iastate.edu%2Fetd%2F15834&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Using reconfigurable computing technology to accelerate matrix decomposition

and applications

by

Xinying Wang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Joseph A. Zambreno, Major Professor

Phillip H. Jones

Tien N. Nguyen

Diane T. Rover

Zhao Zhang

Iowa State University

Ames, Iowa

2016

Copyright c© Xinying Wang, 2016. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this dissertation to my family for their continuous encouragement

and financial assistance in my education. I would also like to thank my friends for their help

and support during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

ACKNOWLEDGEMENTS . xv

ABSTRACT . xvi

CHAPTER 1. INTRODUCTION . 1

1.1 Problem: matrix decomposition . 1

1.2 Solution: FPGA and reconfigurable computing technology 2

1.3 Contributions: FPGA-based accelerators for matrix decomposition and applica-

tions . 2

CHAPTER 2. BACKGROUND . 6

2.1 Matrix decomposition and applications . 6

2.1.1 Eigenvalue Decomposition . 6

2.1.2 Singular Value Decomposition . 7

2.1.3 QR Decomposition . 7

2.1.4 LU Decomposition . 8

2.2 FPGA and reconfigurable computing technology 8

2.2.1 Computational characteristic . 9

2.2.2 Flexibility . 9

2.2.3 Reconfigurability . 10

2.2.4 Fine-grained . 10

2.2.5 Energy efficiency . 11

www.manaraa.com

iv

CHAPTER 3. AN EFFICIENT ARCHITECTURE FOR FLOATING-POINT

EIGENVALUE DECOMPOSITION . 12

3.1 Abstract . 12

3.2 Introduction . 13

3.3 Theoretical background . 14

3.3.1 Singular Value /Eigenvalue Decomposition (SVD/EVD) 14

3.3.2 Jacobi rotations . 15

3.4 Related Work . 15

3.5 The partitioned EVD computation algorithm 17

3.6 The EVD architecture . 19

3.6.1 Diagonal Jacobi rotation component . 21

3.6.2 Off-diagonal single update component 22

3.6.3 Off-diagonal double update component 23

3.7 Experiments and evaluations . 24

3.7.1 Implementation and experimental setup 24

3.7.2 Performance analysis . 24

3.7.3 Convergence analysis . 27

3.8 Conclusion . 28

CHAPTER 4. AN FPGA IMPLEMENTATION OF THE HESTENES-JACOBI

ALGORITHM FOR SINGULAR VALUE DECOMPOSITION 29

4.1 Abstract . 29

4.2 Introduction . 30

4.3 Theoretical background . 32

4.3.1 Singular Value Decomposition (SVD) 32

4.3.2 Classic two-sided Jacobi rotations . 32

4.3.3 Hestenes-Jacobi method . 33

4.4 Related work . 33

4.5 Modified Hestenes-Jacobi algorithm . 35

4.6 Our Hestenes-Jacobi SVD architecture . 37

www.manaraa.com

v

4.6.1 Hestenes preprocessor . 38

4.6.2 Jacobi rotation component . 39

4.6.3 Update operator . 42

4.6.4 The cyclic order for vector pairing . 43

4.7 Experiments and evaluations . 44

4.7.1 Implementation and experimental setup 44

4.7.2 Performance analysis . 45

4.7.3 Convergence analysis . 50

4.8 Conclusion . 51

CHAPTER 5. A RECONFIGURABLE ARCHITECTURE FOR QR DE-

COMPOSITION USING A HYBRID APPROACH 52

5.1 Abstract . 52

5.2 Introduction . 53

5.3 Theoretical background . 55

5.3.1 QR Decomposition . 55

5.3.2 Householder transformation . 55

5.3.3 Givens rotation . 56

5.4 Related work . 56

5.5 Hybrid QR algorithm . 57

5.6 Our architecture for QR Decomposition . 59

5.6.1 Preprocessing component . 60

5.6.2 Factorization component . 61

5.6.3 Matrix update component . 63

5.6.4 I/O considerations . 64

5.7 Implementation and evaluation . 64

5.7.1 Implementation and experimental setup 64

5.7.2 Performance analysis . 65

5.8 Conclusion . 69

www.manaraa.com

vi

CHAPTER 6. A CONFIGURABLE ARCHITECTURE FOR SPARSE LU

DECOMPOSITION ON MATRICES WITH ARBITRARY PATTERNS . 71

6.1 Abstract . 71

6.2 Introduction . 72

6.3 Theoretical background . 73

6.3.1 Sparse LU Decomposition with pivoting 73

6.3.2 Algorithms for sparse LU Decomposition 74

6.4 Related work . 76

6.5 The parallel sparse LU Decomposition algorithm 76

6.6 The sparse LU Decomposition architecture 78

6.6.1 Input . 79

6.6.2 Update . 81

6.6.3 Pivot . 82

6.7 Experiments and evaluations . 82

6.7.1 Implementation and experimental setup 82

6.7.2 Performance analysis . 83

6.8 Conclusions . 87

CHAPTER 7. PARALLELIZING LATENT SEMANTIC INDEXING US-

ING FPGA . 89

7.1 Abstract . 89

7.2 Introduction . 90

7.3 Theoretical background . 91

7.3.1 Latent Semantic Indexing (LSI) . 91

7.3.2 2-3 tree structure . 94

7.4 Related work . 95

7.5 Algorithm for Latent Semantic Indexing . 96

7.6 Proposed architecture for Latent Semantic Indexing 99

7.6.1 Vector reduction component . 100

7.6.2 Jacobi rotation component . 101

www.manaraa.com

vii

7.6.3 Update component . 103

7.6.4 2-3 tree sorting component . 103

7.7 Implementation and Experimental Evaluation 107

7.7.1 Implementation and experimental setup 107

7.7.2 Performance analysis . 109

7.8 Conclusion . 113

CHAPTER 8. A CONFIGURABLE ARCHITECTURE TO ACCELER-

ATE HOMOTOPY `1-MINIMIZATION . 114

8.1 Abstract . 114

8.2 Introduction . 115

8.3 Theoretical background . 117

8.3.1 `1-norm minimization problem . 117

8.3.2 Homotopy method for `1-norm minimization 118

8.4 Related work . 120

8.5 Modified Homotopy algorithm for `1-norm minimization 122

8.6 Configurable architecture for `1-norm minimization 125

8.6.1 The Matrix-vector computation component 125

8.6.2 The Matrix factorization component . 133

8.7 Implementation and Evaluation . 137

8.7.1 Implementation and Experimental Setup 137

8.7.2 Performance analysis . 137

8.8 Conclusion and Future Work . 141

CHAPTER 9. FUTURE WORK DISCUSSION 144

9.1 Hybrid architecture . 144

9.2 Application-specific architecture . 145

www.manaraa.com

viii

CHAPTER 10. CONCLUSION . 146

APPENDIX A. HIGH PERFORMANCE COMPUTING PROCESSORS AND

CONVEY HYBRID-CORE COMPUTING PLATFORM 148

A.1 High performance accelerators . 148

A.1.1 GPUs . 148

A.1.2 Xeon Phi coprocessor . 150

A.1.3 FPGA and reconfigurable computing technology 151

A.2 Convey hybrid-core computing platform . 153

APPENDIX B. HOMOTOPY `1-NORM MINIMIZATION ALGORITHM . 157

B.1 Initial setup process . 157

B.2 Update direction computation process . 158

B.3 Step size computation process . 159

B.4 Support set update process . 160

B.5 Cholesky rank-1 update process . 160

B.6 Stop criterion evaluation process . 161

BIBLIOGRAPHY . 162

www.manaraa.com

ix

LIST OF TABLES

Table 3.1 Proposed architecture performance in speed. 26

Table 3.2 Mean variance from zero of the off-diagonals after numeric iterations. . 28

Table 4.1 Execution time in seconds. 49

Table 4.2 Resource consumption of our Hestenes-Jacobi architecture. 50

Table 5.1 Hybrid QR Decomposition approach computations. 61

Table 5.2 The usage of floating-point double-precision computational cores in num-

bers. 65

Table 5.3 On-chip memory usage in our hardware implementation. 65

Table 6.1 Experimental benchmark matrices and their properties. 84

Table 6.2 Experimental benchmark matrices and their performance. 84

Table 7.1 Local memory design for the management of 2-3 tree structure. 105

Table 8.1 Experimental matrices, properties, and their accuracy. 142

www.manaraa.com

x

LIST OF FIGURES

Figure 1.1 The research outline of this dissertation. 3

Figure 3.1 Our partitioned EVD computation algorithm. 18

Figure 3.2 An example matrix partition for EVD. 19

Figure 3.3 Demonstration of partitioned Jacobi rotation approach (for r ≥ 9). . . 20

Figure 3.4 Block diagram of the general 1D systolic array architecture for EVD. . 21

Figure 3.5 The architecture of Jacobi Rotation Component (eight operands can be

applied every 64 clock cycles). 22

Figure 3.6 Update component architecture. 23

Figure 3.7 EVD/SVD computation time (in seconds) for symmetric matrix by our

design, Intel MKL and GPU. 25

Figure 3.8 The No. of floating point update operations in a single update com-

ponent after each rotation for matrices with various dimensions and

partition stategies. 26

Figure 3.9 Matrix sparsity after processing numeric iterations 27

Figure 4.1 Block diagram of the Hestenes-Jacobi SVD architecture. 37

Figure 4.2 Example architecture of the Hestenes preprocessor. 40

Figure 4.3 Example input to a single layer of multiplier-array. 40

Figure 4.4 Dataflow of the Jocobi rotation procedure. 41

Figure 4.5 The architecture of a single update kernel. 42

Figure 4.6 Demonstration of employed cyclic order for vector pairing. 43

Figure 4.7 No. of floating point operations for our Hestenes-Jacobi SVD on matri-

ces with various dimensions. 45

www.manaraa.com

xi

Figure 4.8 The average No. of double precision floating point operands commu-

nication requests per clock cycle for input matrix with various column

dimensions. 46

Figure 4.9 SVD computation time (in seconds) for square matrices by our Hestenes-

Jacobi architecture, Matlab, Intel MKL and GPU. 47

Figure 4.10 SVD computation time (in seconds) for rectangular matrices by our

Hestenes-Jacobi architecture, Matlab, Intel MKL and GPU. 47

Figure 4.11 Speedups of our Hestenes-Jacobi SVD compare to Matlab SVD. 48

Figure 4.12 Convergence process of different dimensional matrices. 49

Figure 4.13 Convergence process of matrices with column size of 1024 and various

row sizes. 50

Figure 5.1 An example sub-matrix partition of an m × m matrix for our Hybrid

QR Decomposition algorithm. 58

Figure 5.2 Block diagram of our Hybrid QR Decomposition architecture. 59

Figure 5.3 Matrix updates/preprocessing component architecture. 60

Figure 5.4 Dataflow view of the factorization component. 62

Figure 5.5 The clock cycle counts for our QR Decomposition computing on matrices

with various dimensions and partitions. 66

Figure 5.6 Performance comparison with single core, multi-core, GPU and recent

FPGA work. 67

Figure 5.7 The performance of our architecture for performing QR Decomposition

on square and rectangular matrices. 68

Figure 5.8 The average No. of double precision floating point operands communi-

cation requests per clock cycle for input matrix with various dimensions. 69

Figure 6.1 Compact storage formats for sparse matrices 73

Figure 6.2 Popular algorithms for sparse LU Decomposition 75

Figure 6.3 Two examples of block partitioning. 78

Figure 6.4 The block diagram of our sparse LU Decomposition architecture 79

www.manaraa.com

xii

Figure 6.5 Input PE architecture. 80

Figure 6.6 Update PE architecture. 81

Figure 6.7 The profiling results of sparse LU Decomposition on selected benchmarks. 85

Figure 6.8 Impact of multiply-accumulate block size and No. of Input matrix par-

titions on performance. 86

Figure 6.9 The No. of row pivoting operations compared row dimensions of selected

benchmarks. 87

Figure 6.10 Throughput comparison between our architecture, and the FPGA and

software implementations in [Wu et al. (2012)]. 88

Figure 6.11 Speedups of our FPGA implementation normalized to Matlab’s LU De-

composition routine. 88

Figure 7.1 Example term-document matrix and query vector 92

Figure 7.2 The process of Latent Semantic Indexing 93

Figure 7.3 The 2-3 tree structure and operations 94

Figure 7.4 The proposed architecture for Latent Semantic Indexing. 99

Figure 7.5 The architecture of Vector reduction component. 101

Figure 7.6 The architecture of Update component. 102

Figure 7.7 The example of parallel processing with new elements insertions and 2-3

tree structure updates. 106

Figure 7.8 The resulted 2-3 tree with all data inserted. 107

Figure 7.9 The percentage of time consumption for SVD computing in the entire

LSI execution (k is 64). 108

Figure 7.10 The percentage of time consumption for SVD computing in the entire

LSI execution (k is 128). 108

Figure 7.11 LSI computation time (in seconds) for matrices with different dimen-

sions (k is 128). 110

Figure 7.12 LSI computation time (in seconds) for different dimensional matrices

with different k-subspace. 110

www.manaraa.com

xiii

Figure 7.13 The average No. of double precision floating point operands commu-

nication requests per clock cycle for input matrix with various column

dimensions (k is 128). 112

Figure 7.14 Speedups of our LSI process compare to Matlab LSI program execution. 112

Figure 8.1 Block diagram of the proposed architecture for `1-norm minimization. 126

Figure 8.2 The architecture of the Matrix-vector computation component. 127

Figure 8.3 The process of the matrix A symmetrization with the Matrix-vector

architecture. 129

Figure 8.4 The process of the matrix A symmetrization with the Matrix-vector

architecture (continued). 130

Figure 8.5 The process of the matrix A symmetrization with the Matrix-vector

architecture (continued). 131

Figure 8.6 The architecture of the Matrix factorization component. 132

Figure 8.7 The architecture of update element in the Matrix factorization component.133

Figure 8.8 The diagram of the matrix inverse process. 135

Figure 8.9 The diagram of Matrix factorization component with reconfiguration to

Cholesky rank-1 update. 136

Figure 8.10 The profiling results of `1-norm minimization with various dimensional

input datasets. 139

Figure 8.11 `1-norm minimization computation time (in seconds) for matrices with

row dimension as 512 and various rank-n update configuration. 139

Figure 8.12 `1-norm minimization computation time (in seconds) for matrices with

column dimension as 512 and various rank-n update configuration. . . 140

Figure 8.13 No. of iterations for convergence with different matrix dimensions and

update configurations. 141

Figure 8.14 The dimensional speedups of our hardware `1-norm minimization solu-

tion over Matlab implementation. 143

Figure A.1 Design philosophies behind CPUs and GPUs [Kirk and Hwu (2010)] . 149

www.manaraa.com

xiv

Figure A.2 An example of CUDA-capable GPU architecture [Kirk and Hwu (2010)] 150

Figure A.3 The architecture of Intel Xeon Phi Coprocessor core [Jeffers and Rein-

ders (2013)] . 151

Figure A.4 The general architecture of FPGAs [Kuon et al. (2008)] 152

Figure A.5 An example architecture of FPGA logic block [Kuon et al. (2008)] . . . 152

Figure A.6 The example topology of switch box [Kuon et al. (2008)] 153

Figure A.7 The Convey Hybrid-Core Architecture [Convey Computer HC-2 (2012)] 154

Figure A.8 The Convey HC-2 memory subsystem [Convey Computer HC-2 (2012)] 155

www.manaraa.com

xv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to those who helped me with

various aspects of conducting research and the writing of this dissertation. First, thanks to

my advisor, Dr. Joseph Zambreno for his vision that lead me to this research. His guidance,

patience, support and encouragement provide me the ability to develop research projects, and

inspired me for completing my graduate education. His instructions benefit me both in my

research and professional development. Thanks also to Dr. Phillip Jones for his help in my

research and paper writing. I also appreciate Dr. Diane Rover, Dr. Zhao Zhang, Dr. Tien

Nguyen for serving as my committee members; their comments and contributions are of great

significance for improving this work.

I would also like to express my appreciation to my family, especially my parents, and all

my friends in Ames or around the world in helping me pursue the degree.

www.manaraa.com

xvi

ABSTRACT

Matrix decomposition plays an increasingly significant role in many scientific and engi-

neering applications. Among numerous techniques, Singular Value Decomposition (SVD) and

Eigenvalue Decomposition (EVD) are widely used as factorization tools to perform Principal

Component Analysis (PCA) for dimensionality reduction and pattern recognition in image pro-

cessing, text mining and wireless communications, while QR Decomposition (QRD) and sparse

LU Decomposition (LUD) are employed to solve the dense or sparse linear system of equations

in bioinformatics, power system and computer vision. Matrix decompositions are computa-

tionally expensive and their sequential implementations often fail to meet the requirements of

many time-sensitive applications.

The emergence of reconfigurable computing has provided a flexible and low-cost opportunity

to pursue high-performance parallel designs, and the use of FPGAs has shown promise in

accelerating this class of computation. In this research, we have proposed and implemented

several highly parallel FPGA-based architectures to accelerate matrix decompositions and their

applications in data mining and signal processing. Specifically, in this dissertation we describe

the following contributions:

• We propose an efficient FPGA-based double-precision floating-point architecture for EVD,

which can efficiently analyze large-scale matrices.

• We implement a floating-point Hestenes-Jacobi architecture for SVD, which is capable of

analyzing arbitrary sized matrices.

• We introduce a novel deeply pipelined reconfigurable architecture for QRD, which can be

dynamically configured to perform either Householder transformation or Givens rotation

in a manner that takes advantage of the strengths of each.

www.manaraa.com

xvii

• We design a configurable architecture for sparse LUD that supports both symmetric and

asymmetric sparse matrices with arbitrary sparsity patterns.

• By further extending the proposed hardware solution for SVD, we parallelize a popular

text mining tool—Latent Semantic Indexing with an FPGA-based architecture.

• We present a configurable architecture to accelerate Homotopy `1-minimization, in which

the modification of the proposed FPGA architecture for sparse LUD is used at its core

to parallelize both Cholesky Decomposition and rank-1 update.

Our experimental results using an FPGA-based acceleration system indicate the efficiency

of our proposed novel architectures, with application and dimension-dependent speedups over

an optimized software implementation that range from 1.5× to 43.6× in terms of computation

time.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Problem: matrix decomposition

Matrix decomposition refers to a class of linear algebraic operations that are widely used

at the core of many scientific and engineering applications. By representing the data points in

the form of matrix, many applications use matrix decomposition as an advanced method to ex-

tract interesting information. The use of matrix decompositions typically involves that analyze

data pattern and solve linear system of equations. For example, Singular Value Decomposition

(SVD) and Eigenvalue Decomposition (EVD) are popular factorization tools to perform pat-

tern recognition and dimensionality reduction in the application of data mining such as Latent

Semantic Indexing for text analysis, while QR Decomposition and LU Decomposition are used

to solve dense or sparse system of linear equations in signal processing such as `1-minimization

for robust face recognition. However, matrix decompositions are either operated in an iterative

manner or iteratively performed in an application. Thus, they are considered as computation-

ally expensive processes and their inherent computational complexity challenges them to satisfy

the performance requirements for time-sensitive designs. For example, in the application of im-

age recovery for video surveillance [Candès et al. (2011)], it takes over 100 seconds to recover

an image represented as a matrix with the dimensions of 3000 by using SVD technique. As

data dimensionality is increasing continuously, the runtime of matrix decomposition is likely

to keep growing significantly, which indicates the necessary of exploring solutions to accelerate

matrix decomposition.

www.manaraa.com

2

1.2 Solution: FPGA and reconfigurable computing technology

To improve the performance, parallel solutions for matrix decomposition were proposed

by using highly parallel accelerators such as Graphic Processing Unit (GPUs) and multi-core

platforms. However, the multi-dimensional threading structure of GPU computing or multi-

core platform is not strongly compatible with the highly data-dependent transformations or

rotations of matrix decomposition. In practice, the performance improvement of GPU and

multi-core platform-based matrix decomposition implementations is limited due to the iterative

thread synchronization and irregular memory access.

Modern FPGAs are highly parallel and specialized computational fabrics, and they provide

flexible and low-cost opportunities to pursue high-performance implementations of computa-

tional and memory intensive applications. Previous FPGA-based implementations have shown

the capability of improving the performance for many applications such as linear algebra [Wen

et al. (2010)] and graphic computation [Nurvitadhi et al. (2014)]. Compared to other parallel

platforms, FPGAs have shown strong ability in providing better solution for performance im-

provement by parallelizing the matrix decomposition at the granularity of operand level with

flexibility, reconfigurability and low energy consumption [Brent and Luk (1982); Wang and

Leeser (2009); Kapre and DeHon (2009)].

1.3 Contributions: FPGA-based accelerators for matrix decomposition

and applications

Previous FPGA-based implementations have looked at SVD [Brent and Luk (1982)], QRD

[Wang and Leeser (2009)] and sparse LUD [Kapre and DeHon (2009)]. However, those ap-

proaches all have some limitations in common: either restricted with the scalability of the

adapted matrices due to the logic capacity of FPGAs [Brent and Luk (1982); Ahmedsaid et al.

(2003); Ma et al. (2006); Ledesma-Carrillo et al. (2011); Wang and Leeser (2009)] or required

the input matrices of special property or irregular sparsity structure [Rafique et al. (2012); Tai

et al. (2011); Vachranukunkiet (2007); Kapre and DeHon (2009); Wu et al. (2012)].

In this dissertation, we have designed and implemented efficient FPGA architectures for ma-

www.manaraa.com

3

Figure 1.1: The research outline of this dissertation.

trix decompositions and applications to further explore the FPGA’s potential in providing high

performance solution. To analyze the representatives of Eigenvalue-based matrix decomposi-

tion with FPGA, EVD and SVD are selected as the candidates for performance improvement,

in which EVD analyze squared symmetric matrices, while SVD operates datasets with arbitrary

patterns. In addition, hardware solutions for QRD and sparse LUD are also proposed as both

of them are the most popular factorization tools to solve linear system of equation. In this

dissertation, the proposed FPGA architectures for SVD and LUD are also extended to accel-

erate the applications of Latent Semantic Indexing (LSI) and `1-norm minimization problem.

Figure 1.1 demonstrates the research outline of this dissertation, all of which are projects with

either separate paper publications in conference proceedings or under submission to Journals

or conferences. The contributions of this dissertation are itemized as below, and they will be

explained in detail in the later chapters:

www.manaraa.com

4

• An efficient architecture for floating-point Eigenvalue Decomposition [Wang

and Zambreno (2014a)]: this chapter presents a novel and efficient FPGA-based archi-

tecture for Eigenvalue Decomposition, which attempts to analyze considerably larger

matrices than those applied to previous hardware designs, using matrix partition and

a pipelined 1D systolic array. Experimental results demonstrate the better efficiency of

our system compared to optimized CPU-based software solutions, a recent FPGA de-

sign for large matrices, and a GPU-based implementation when the matrix size is under

2000× 2000.

• An FPGA implementation of the Hestenes-Jacobi algorithm for Singular

Value Decomposition [Wang and Zambreno (2014b)]: this chapter proposes an FPGA-

based hardware design of the Hestenes-Jacobi algorithm for Singular Value Decomposi-

tion with floating-point arithmetic, which attempts to analyze an arbitrary m×n matrix.

Improved efficiency of this architecture compared to an optimized software-based SVD

solution has been demonstrated for matrices with small to medium column dimensions,

even with comparably large row dimensions.

• A reconfigurable architecture for QR Decomposition using a hybrid approach

[Wang et al. (2014)]: this chapter introduces a hybrid approach that leverages the

strengths of both Householder transformation and Givens rotation by applying the most

appropriate algorithm of the two at each stage of the QR Decomposition. A reconfigurable

architecture for QR Decomposition, which can be dynamically configured to perform ei-

ther Householder transformation or Givens rotation, both of which are deeply pipelined.

Experimental results demonstrates the achievement of speedups of this architecture com-

pare to Intel Math Kernel Library (MKL), an FPGA-based tiled matrix decomposition,

and a single threaded optimized software routine.

www.manaraa.com

5

• A configurable architecture for sparse LU Decomposition on matrices with

arbitrary patterns [Wang et al. (2016)]: this chapter proposes an FPGA-based archi-

tecture for sparse LU Decomposition, which can efficiently process sparse matrices with

arbitrary sparsity patterns. This architecture factorizes columns from the lower triangular

part of a matrices and rows from the upper triangular part of the matrix simultaneously,

and in parallel with pivot operations. Performance improvement is demonstrated com-

pared to an optimized software implementation for benchmarks containing a wide range

of sparsity patterns.

• Parallelize Latent Semantic Indexing using FPGA: this chapter introduces an

FPGA-based accelerator for Latent Semantic Indexing, which parallelizes the SVD cal-

culation, the computing of cosine similarity between query and documents, and the pro-

cess of ranking selected documents. This deeply pipelined architecture implements the

extension of previous proposed Hastenes-Jacobi SVD architecture and an ordered tree

structure. Evaluation of this design indicates the dimension-dependent performance im-

provements compared to optimized software implementation.

• A configurable architecture to accelerate Homotopy `1-minimization: this chap-

ter implements an FPGA-based highly pipelined architecture for `1-norm minimization

with Homotopy algorithm, which can be dynamically configured to perform either parallel

Cholesky Decomposition or rank-1 update. Evaluation of this architecture demonstrates

the improved efficiency compared to optimized software solution with both randomly

generated datasets and the benchmark of a real-world face image database used.

www.manaraa.com

6

CHAPTER 2. BACKGROUND

2.1 Matrix decomposition and applications

Matrix decompositions, such as Eigenvalue Decomposition (EVD), Singular Value Decom-

position (SVD), QR Decomposition and LU Decomposition, have played vital roles in many

scientific and engineering applications, especially in data mining and signal processing. For

example, in data mining, Chen et al. (2010) proposed a Semisupervised Non-negative Matrix

Factorization (SS-NMF) framework for data coclustering in text mining, information retrieval

and bioinformatics. Compared to conventional data mining approach, matrix decomposition

shows better capability in tackling the challenge brought by the fast-growing datasets. Joao

et al. (2009) proposed a matrix decomposition method to improve the data mining process in

telecommunications such as mobile subscriber classification and mobile network optimization.

In signal processing, Harteneck and Stewart (1998) presented an adaptive solution for IIR fil-

ters, with which matrix decomposition is applied at its core. Studer et al. (2007) investigated

matrix decomposition-based architectures and implementations for MIMO systems in wireless

communication. However, the inherent computational complexity of matrix decompositions

challenges them to satisfy the performance requirements for time-sensitive designs. In the

following paragraphs, several most representative matrix decomposition and applications are

introduced.

2.1.1 Eigenvalue Decomposition

Eigenvalue Decomposition (EVD) factorizes a symmetric matrix into a product of eigen-

values and eigenvectors, with which key patterns in the data can be identified. In many

applications, EVD is used as an estimation technique to perform dimensionality reduction and

www.manaraa.com

7

pattern recognition. In designing FIR filter bank for efficient subband coding, Redif et al.

(2011) modified sequential best rotation (SBR2) algorithm, in which iterative, time-domain

polynomial EVD is computed. In [Gabbay and Scott (2012)], the authors presented an EVD-

based approach for Discrete Spectrum of Relaxation Frequencies (DSRF) in providing valuable

classifying characteristic for buried objects detection and discrimination. However, in many ap-

plications, EVD is performed iteratively, which incurs a relatively high computational cost for

the entire system. For example, the performance of distributed total least squares estimation

in ad hoc sensor networks is dominated by EVD [Bertrand and Moonen (2011)].

2.1.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is normally considered as an extension of EVD that

can analyze arbitrary m × n rectangular matrix. Similar with EVD, SVD is widely used as a

popular technique of Principal Component Analysis (PCA) to reduce the dimensions of data in

high-dimensional spaces. In PCA, SVD generated singular values and singular vectors are used

to approximate original datasets with fewer dimensions without losing significant information.

To demonstrate the applications of SVD, Liao et al. (2012) introduced an SVD-based data

mining framework to recognize the pattern of partial discharge, the underlying cause of an

electrical equipment failure, while the authors of [Mu et al. (2011)] discussed the optimization

of SVD usage in accelerating the exact recovery from visual data with corrupted components.

However, SVD is a computationally-expensive procedure, and in the video surveillance appli-

cation of [Candès et al. (2011)], it takes 185.2 seconds to recover the square matrix with the

dimensions of 3000 through running partial SVD 15 times, which makes it difficult to satisfy

stringent real-time performance requirements.

2.1.3 QR Decomposition

QR Decomposition transforms a matrix into a product of an orthogonal matrix Q and a up-

per triangular matrix R, on which normally backward substitution is performed to solve a linear

equation or compute a matrix inverse. Xue et al. (2013) proposed an QR Decomposition-based

method to calculate equalizer matrix for Multiple-Input Multiple-Output (MIMO) Orthogonal

www.manaraa.com

8

Frequency Division Multiplexing (OFDM) technology used in today’s wireless communication

system. In CDMA, Liu and McCanny (2003) solved recursive least square problem by using

QR Decomposition with proper backward substitution. Although QR Decomposition shows its

popularity and efficiency in matrix computation, it still requires O(n3) operations. Previous

research has shown that more than 10 minutes could be taken to perform QR Decomposition-

based robust PCA on a 110, 592×100 matrix, which is far beyond the requirements of potential

real-time applications such as video surveillance or traffic monitoring [Anderson et al. (2011)].

2.1.4 LU Decomposition

The LU Decomposition on a matrix A produces a lower triangular matrix L and an upper

triangular matrix U , whose product is identical to the matrix A. Similar with QR Decompo-

sition, LU Decomposition is of great interest to scientists and engineers in solving dense linear

system of equations. Besides, it has also demonstrated its wide usage in sparse linear algebra

based applications. For example, Ren et al. (2012) explored the parallelization of sparse LU

Decomposition for SPICE (Simulation Program with Integrated Circuit Emphasis) Simulation,

which process operates unsymmetric and highly sparse matrices with irregular nonzero pattern.

Cunningham et al. (2011) investigated the acceleration strategy for sparse LU Decomposition

used for power flow computation and analysis. Due to the requirement of performing LU De-

composition iteratively in many system, and the inherent complexity of LU Decomposition,

both sparse and dense LU Decomposition has become a performance dominator in many prac-

tical applications, such as image processing [Yang et al. (2013)], circuit simulation [Ren et al.

(2012)], and power flow system [Cunningham et al. (2011)].

2.2 FPGA and reconfigurable computing technology

FPGA, which stands for Field Programmable Gate Array, is an integrated circuit contains

array of configurable logic blocks (CLB) connected via programmable interconnects, and a con-

figurable logic block (CLB) can be programmed individually to perform a unique function with

combinational or sequential logic [Hauck and DeHon (2007)]. On an FPGA, a finite number

of logic and memory resources are equipped including programmable look-up tables (LUTs),

www.manaraa.com

9

flip-flops, multiplexers, dedicated DSPs and block RAMs. FPGA is widely used for ASIC (Ap-

plication Specific Integrated Circuit) prototyping or random, reconfigurable, special-purpose

hardware implementation in various application domains from automotive to aerospace, and

from consumer electronics to data processing [Kuon et al. (2008)]. FPGA is featured by its

computational characteristic, reconfigurability, flexibility, fine-grained, and energy efficiency,

which make it as a candidate of hardware accelerator receive increasingly significant atten-

tion from high performance computing community. However, FPGAs are often disadvantaged

by limited I/O bandwidth, and the performance can be further significantly improved as the

memory bandwidth is scaled to the demands of applications [Zhang et al. (2009)]. In this

dissertation, proposed solutions are evaluated on Convey system, an FPGA-based hybrid-core

computing platform with I/O bandwidth optimized [Brewer (2010)]. The detail overview of

high performance computing processors and convey hybrid-core computing platform can be

referred in Appendix A.

2.2.1 Computational characteristic

FPGAs are able to improve the application performance in terms of speed by largely ex-

ploring the parallelism. By massively using hardware resources, parallel computations can be

achieved through concurrent operations with extensively scheduled if the datasets have few or

no data dependencies. Besides, in FPGAs, pipelining is implemented to improve the clock rate

at the cost of latencies, and it offers parallelism with operations overlapped in time. With

simple control requirement, FPGA applications are usually able to achieve 50 to 100 times

the operations per clock cycle of a microprocessor, and their speedups over microprocessor

implementations are determined by the amount of exploitable parallelism [Hauck and DeHon

(2007)].

2.2.2 Flexibility

Compared to other programmable technologies such as microprocessor and DSPs, FPGAs

provide a rich set of implementation alternatives instead of being given a fixed hardware archi-

tecture, and they are customizable and reprogrammable to optimize the implementations with

www.manaraa.com

10

the best use of the devices [Hauck and DeHon (2007)]. With the help of programmable logic,

FPGAs are able to flexibly configure logic and memory resources in many different ways in

terms of combination and connection. By leveraging the flexibility of FPGAs, implementations

can be optimized according to the application-specific performance demands with necessary

trade-offs.

2.2.3 Reconfigurability

The hardware architecture of FPGAs can be configured any number of time with the strate-

gies of either configure-once or run-time reconfiguration [Hauck and DeHon (2007)]. Configure-

once performs a single system-wide architecture configuration prior to the application execution,

and the configuration will be not altered until the application completes. Run-time reconfig-

uration dynamically reconfigure the hardware to perform different functions that are needed

by the application, and it provides a great opportunity to perform numerous algorithms at

different phase of execution with the same hardware resources [Ritala et al. (2000)].

2.2.4 Fine-grained

In today’s FPGAs, one or more 4-LUTs or 6-LUTs are grouped into a single logic block.

The logic blocks made up by small look-up tables possess fine-grained computational capability,

which more suitable for operations with bit-level manipulations and arithmetic. With the fine-

grained structure, FPGAs are easily tailored to application-specific computational requirements

[Hauck and DeHon (2007)].

www.manaraa.com

11

2.2.5 Energy efficiency

Although compared to ASICs, FPGAs consume more power due to the additional transistors

are required by the programmability [Hauck and DeHon (2007)], FPGAs are demonstrated to

outperform hardware alternatives (CPUs, GPUs, DSPs and etc.) in energy consumption for

compute-intensive applications [Che et al. (2008); Kestur et al. (2010)]. In many applications,

FPGA-based implementations show best energy efficiency in terms of performance per Watt

compared to CPU, GPU, Multicores and ASIC solutions [Fowers et al. (2012); Hamada et al.

(2009); Betkaoui et al. (2010)].

www.manaraa.com

12

CHAPTER 3. AN EFFICIENT ARCHITECTURE FOR

FLOATING-POINT EIGENVALUE DECOMPOSITION

Modified from a paper published in

Proceedings of 2014 International Symposium on Field-Programmable Custom Computing

Machines (FCCM)

Xinying Wang1 and Joseph Zambreno2

3.1 Abstract

Eigenvalue Decomposition (EVD) is a widely-used factorization tool to perform principal

component analysis, and has been employed for dimensionality reduction and pattern recog-

nition in many scientific and engineering applications, such as image processing, text mining

and wireless communications. EVD is considered computationally expensive, and as software

implementations have not been able to meet the performance requirements of many real-time

applications, the use of reconfigurable computing technology has shown promise in accelerating

this type of computation. In this paper, we present an efficient FPGA-based double-precision

floating-point architecture for EVD, which can efficiently analyze large-scale matrices. Our

experimental results using an FPGA-based hybrid acceleration system indicate the efficiency

of our novel array architecture, with dimension-dependent speedups over an optimized software

implementation that range from 1.5× to 15.45× in terms of computation time. In addition, we

also demonstrate the convergence performance of our EVD processing system.

1Primary researcher and author
2Correspondence author

www.manaraa.com

13

3.2 Introduction

Eigenvalue Decomposition (EVD) has been widely used as a factorization tool to conduct

principal component analysis in many scientific and engineering applications, such as image

processing, acoustic processing, mobile communication and remote sensing [Redif et al. (2011);

Gabbay and Scott (2012); Bertrand and Moonen (2011)]. To minimize the “dimensionality

curse”, which refers to the difficulties in managing and analyzing high-dimensional data, EVD

can be employed to identify key patterns in the data, after which the original datasets can

be approximated with fewer dimensions without losing significant information. In many signal

processing applications, EVD is performed iteratively, which incurs a relatively high computa-

tional cost for the entire system. For example, distributed total least squares estimation in ad

hoc sensor networks is dominated by EVD [Bertrand and Moonen (2011)]. As data dimension-

ality is continuing to increase in scientific and engineering applications, EVD runtime is likely

to keep pace.

Eigenvalue Decomposition is characterized as the process of orthogonal transformations to

diagonalize symmetric matrices, in which large amounts of highly data-dependent rotations are

performed iteratively. Efficient software implementations such as MATLAB and LAPACK em-

ploy the Householder transformation [Golub and Kahan (1965)] to diagonalize matrices, which

consists of recursive bidiagonalization process and implicit QR Decompositions; however, the

high data dependency and inherent computational complexity of O(n3) restrict its performance,

especially for applications involving large-scale matrices. The recent emergence of Graphic

Processing Units (GPUs) in the high performance computing community has allowed for new

methods to accelerate many general-purpose computations. However, the multi-dimensional

threading structure of GPU computing is not highly compatible with the iterative thread syn-

chronization and irregular memory access required for better EVD convergence making the

optimization of these designs on GPUs quite challenging, especially for input matrices with

dimensions smaller than 1000 [Lahabar and Narayanan (2009); Kotas and Barhen (2011)].

Modern FPGAs are highly parallel and specialized computational fabrics, and previously

researchers have investigated accelerating both EVD and Singular Value Decomposition (SVD)

www.manaraa.com

14

using FPGAs [Brent et al. (1985); Hestenes (1958)]. However, similar to other FPGA-based

designs for matrix decomposition [Tai et al. (2011); Wu et al. (2012)], the logic capacity of

FPGAs has typically limited the scalability of the adapted matrices [Brent and Luk (1982);

Ahmedsaid et al. (2003); Ma et al. (2006); Ledesma-Carrillo et al. (2011)], even though this

previous work targeted applications in real-time signal processing using fixed-point arithmetic,

for which hardware resource utilization is significantly less than for floating-point arithmetic.

In this chapter, we present a novel and efficient FPGA-based architecture for Eigenvalue

Decomposition, which attempts to analyze considerably larger matrices than those applied to

previous hardware designs, using matrix partition and a pipelined 1D systolic array. Our single

FPGA-based design supports double precision float-point operands [Microprocessor Standards

Committee of the IEEE Computer Society (2008)], offering a wider dynamic range than previous

fixed-point implementations. Our experimental results demonstrate the better efficiency of our

system compared to optimized CPU-based software solutions, the latest FPGA design for large

matrices [Ledesma-Carrillo et al. (2011)], and a GPU-based implementation when the matrix

size is under 2000× 2000 [Lahabar and Narayanan (2009)].

3.3 Theoretical background

3.3.1 Singular Value /Eigenvalue Decomposition (SVD/EVD)

The Singular Value Decomposition of an m× n matrix A is in the form of eq. (3.1)

A=UΣV
′

(3.1)

where U is an m × m matrix and V is an n × n matrix, both of which are orthogonal

matrices such that U’·U = V’·V = I. Σ is an m × n diagonal matrix with the nonnegative

diagonal elements, which are the singular values.

Factorization is called EVD when A is a squared symmetric matrix with U being identical

to V, both of which are orthogonal matrices named as eigenvectors, while Σ is an n×n diagonal

matrix with eigenvalues as diagonal elements. Diagonalizing rotation algorithms are popular

in performing Singular Value Decomposition or solving eigenvalue problems.

www.manaraa.com

15

3.3.2 Jacobi rotations

Jacobi rotations are performed iteratively for matrix diagonalization by using Jacobi rota-

tion matrices J l and Jr as shown in eq. (3.2) and eq. (3.3). J l is identical to Jr when Apq and

Aqp have the same value.

Ai+1 = J liAiJ
r
i (3.2)

J l
′ ·

 App Apq

Aqp Aqq

 ·Jr=
 A”

pp 0

0 A”
qq

 (3.3)

The Jacobi matrices J l and Jr can be obtained in the forms of J l(p,q,α) and Jr(p,q,β)

through the determinations of plain rotation angles with paired diagonal elements and their

respective off-diagonal elements, as shown in eq. (3.4) and eq. (3.5), where θ represents plain

rotation angles α or β [Brent et al. (1985)].

Jpp = cos(θ);

Jpq = sin(θ); (p < q)

Jqp = -sin(θ); (p < q)

Jqq = cos(θ);

Jii = 1; (i6= p,q)

Jij = 0, Others.

(3.4)

β+α=arctan(
Aqp +Apq
Aqq −App

) β-α=arctan(
Aqp −Apq
Aqq +App

) (3.5)

The Jacobi rotation approach provides opportunities for pursuing parallelism by simulta-

neously computing a group of independent 2 × 2 Jacobi rotation matrices, whose calculations

only affect two rows and columns of a matrix.

3.4 Related Work

Solutions for Eigenvalue Decomposition and Singular Value Decomposition can be cate-

gorized into two types: the Householder bidiagonalization with implicit QR [Golub and Ka-

www.manaraa.com

16

han (1965); Golub and Reinsch (1970)] and the Jacobi related approach [Brent et al. (1985);

Hestenes (1958)]; among which, the Householder approach has been employed by many stan-

dard software implementations (e.g., MATLAB, LAPACK) due to its efficiency in sequential

programming. However, its inherent high data dependency poses challenges for further par-

allelism. The GPU-based implementations for the Householder approach were evaluated, in

which possible acceleration was demonstrated only for matrices with significantly large sizes

(� 1000× 1000) [Lahabar and Narayanan (2009); Kotas and Barhen (2011)].

Jacobi-related approaches, including the two-sided Jacobi Rotation algorithm [Brent et al.

(1985)] and the one-sided Jacobi Rotation algorithm [Hestenes (1958)], provide an opportunity

for better parallelism. To parallelize the computations through implementing Jacobi approach

on multi-core platforms, block-Jacobi algorithms were proposed to accelerate EVD and SVD

[Bečka et al. (2012)]; the experimental results show comparably poor performance of the imple-

mentation on a multi-processor platform due to the overhead of inter-processor communication,

even when using a modern massive parallel supercomputer with 1024 cores.

FPGAs have demonstrated the capability to parallelize numerous algorithms at the operand-

level granularity. Previously, FPGAs were employed to demonstrate the highly parallel im-

plementations of EVD and SVD based on two-sided Jacobi Rotations, by accelerating their

independent 2× 2 rotations, using a parallel architecture featuring a 2-dimensional systolic ar-

ray. In this earlier work, the scalability of the applicable matrices had been severely restricted

by the limited resources on FPGAs [Brent and Luk (1982); Brent et al. (1985); Ahmedsaid

et al. (2003); Ma et al. (2006)]. In [Brent and Luk (1982); Brent et al. (1985)], the authors

demonstrated the efficiency of the 2D systolic array designs for EVD and SVD with the time

complexity of O(n log n) for an n-by-n square matrix, in which log n was proved as the number

of iterations for reasonable convergence with certain threshold by applying parallel Jacobi ro-

tation or cyclic Jacobi rotation methods; meanwhile, a number of n2 processing units (PEs) are

needed. The Hestenes-Jacobi Method [Strumpen et al. (2003)], which is also known as one-sided

Jacobi rotation, provides a better opportunity for vectorized parallel operations. However, its

architectural design with iterative and repetitive processing limited the overall speedup [Kotas

and Barhen (2011)], while GPU implementations have suffered from the overhead associated

www.manaraa.com

17

with thread synchronization and global memory reads [Ledesma-Carrillo et al. (2011)]. While

the aforementioned FPGA-based designs were all calculated with fixed-point datasets, it is

important to note that floating-point operands are significantly more popular in scientific and

engineering applications given the wider range of data representation [Microprocessor Stan-

dards Committee of the IEEE Computer Society (2008)].

3.5 The partitioned EVD computation algorithm

Our partitioned EVD computation algorithm (Fig. 3.1) was derived from the two-sided

Jacobi approach [Brent et al. (1985)] to zero out all the off-diagonal elements iteratively. The

rotations for a symmetric matrix are identical on both sides, whose computations can be reduced

by half as the processing on a lower or upper triangular matrix. To improve the scalability

of the design, the matrix is first partitioned into a series of vector-blocks and then followed

by recursively rotating diagonal elements to annihilate off-diagonals. Each partition consists

of numerical diagonal elements and their respective rows and columns in the lower or upper

triangular part of the matrix. A partition example is shown in Fig. 3.2, and vector-block

partitions related to the diagonal elements of A1,1-A4,4 and A5,5-An,n are highlighted by the

polygons with solid and dashed lines, respectively. In this paper, for each partitioned vector-

block, the diagonal elements and off-diagonal elements in this partition are referred to as host

diagonal elements and host off-diagonal elements respectively, while the remainder of diagonal

elements and off-diagonal elements in the matrix are referred to as guest diagonal elements and

guest off-diagonal elements respectively. For example, considering the solid lines highlighted

partition in Fig. 3.2, A1,1-A4,4 are host diagonal elements and A5,5-A8,8 are guest diagonal

elements, while the off-diagonal elements in the first four columns are host off-diagonal elements

and the rest of off-diagonals are guest off-diagonal elements. At runtime, the partitioned vector-

blocks are processed successively; in processing each partition, host diagonal elements are paired

with every other diagonal elements of the matrix to perform Jacobi rotations to zero out all

the host off-diagonal elements. Meanwhile, the updates of affected off-diagonal elements are

calculated.

www.manaraa.com

18

Figure 3.1: Our partitioned EVD computation algorithm.

www.manaraa.com

19

Figure 3.2: An example matrix partition for EVD.

3.6 The EVD architecture

To parallelize our partitioned EVD approach, each partition is mapped to a systolic array

of computational processing elements (PEs). Figure 3.3 shows the example of mapping the

partition, which is highlighted by polygon with the solid line in Fig. 3.2, to the systolic array.

As shown in Fig. 3.3, this systolic array consists of three types of computational PEs: diagonal

Jacobi Rotation elements, off-diagonal single update elements, off-diagonal double update ele-

ments, in which the diagonal PEs (shown as ovals in Fig. 3.3) are employed to conduct Jacobi

Rotation, while the Off-diagonal Single Update elements and the Off-diagonal Double Update

elements are used to update off-diagonal vectors affected by one or two rotations respectively

(shown as rectangles in Fig. 3.3).

Rotation angle parameters cos and sin are generated by the diagonal PEs and then broad-

cast to the respective off-diagonal PEs, which are in the same rows and columns with diagonal

PEs, to update the remaining elements. Off-diagonal PEs with two off-diagonal elements, are

affected only by the rotations in the same row that a “single update” is needed over the two

off-diagonal elements; on the other hand, off-diagonal PEs, with which four off-diagonal el-

ements are included, have to update twice on different combinations of the two off-diagonal

www.manaraa.com

20

Figure 3.3: Demonstration of partitioned Jacobi rotation approach (for r ≥ 9).

pairs as named “double update”, since they are affected by the rotations both from the same

rows and columns. Numerical diagonal PEs perform rotation simultaneously in parallel with

the updates of their respective columns and rows that are operated in off-diagonal PEs. Values

are transmitted along their dataflow paths once their calculations are completed. The general

dataflow is demonstrated in Fig. 3.3 as arrows, in which the arrows labeled with 1© and 2©

indicate the transmission of guest diagonal element and rotation angle parameter (cos, sin)

respectively while the movements of host off-diagonal elements and guest off-diagonal elements

are represented by the arrows labeled with 3© and 4© respectively. The host off-diagonal el-

ements xr+1,1, which move leftwards for rotations iteratively, continue to be updated while

moving downward after being zeroed and then loop back to the end of the row when they

have reached the bottom row of the PEs. The movement of guest off-diagonal elements xr+1,r

follows their respective guest diagonal element xr+1,r+1; guest off-diagonal elements loop back

to the end of row when they are needed by subsequent updates.

To fit our design on a single chip, pipelined computational cores provide the opportunity to

reuse the PEs with parallel calculations. One Jacobi Rotation PE is devised to perform all the

Jacobi Rotations in a pipeline, while a series of pipelined off-diagonal single update PEs and one

www.manaraa.com

21

Figure 3.4: Block diagram of the general 1D systolic array architecture for EVD.

pipelined off-diagonal double update PE are used to simultaneously update groups of affected

off-diagonal sub-matrices. Consequently, the architecture is converted into a one-dimensional

systolic array as shown in Fig. 3.4 with the number of off-diagonal Single Update components

determined by the dimension of the matrices and the resource capacity of the hardware.

3.6.1 Diagonal Jacobi rotation component

To zero out an off-diagonal element, Jacobi rotation is performed with its respective two

diagonal elements in the same row or column. Jacobi Rotation can be performed through a

series of addition, subtraction, multiplication, division and square root operations. Through

expanding the rotation formulas, the rotation process is shown in Eqns. (3.6, 3.7), in which app,

aqq, and apq represent two diagonal elements and an off-diagonal element respectively. Then,

the process is optimized by shortening the latency and parallelizing the calculations.

cos =

√
(aqq−app)2+2∗a2pq+|aqq−app|∗

√
(aqq−app)2+4∗a2pq

(aqq−app)2+4∗a2pq+|aqq−app|∗
√

(aqq−app)2+4∗a2pq
(3.6)

sin = (sign)

√
2∗a2pq

(aqq−app)2+4∗a2pq+|aqq−app|∗
√

(aqq−app)2+4∗a2pq
(3.7)

www.manaraa.com

22

Figure 3.5: The architecture of Jacobi Rotation Component (eight operands can be applied

every 64 clock cycles).

An efficient EVD design needs to perform Jacobi rotation and updates of affected rows

and columns simultaneously; it is important to balance resource allocation between the Ja-

cobi rotation component and all the updating modules, whose computational latency increases

linearly with the growth of matrix dimension. Therefore, to balance the hardware resource

consumption and efficiency, pipelined floating-point cores are shared by the calculations. An

example Jacobi Rotation component architecture is demonstrated in Fig. 3.5, in which eight

double-precision operands are streamed in every 64 clock cycles.

3.6.2 Off-diagonal single update component

The off-diagonal single update component is responsible for updating the off-diagonal ele-

ments, which are affected by one Jacobi Rotation each iteration. Although the updating process

consists of simple multiplications and addition or subtraction as is shown in eq. 3.8 and eq.

3.9, it is infeasible to fit an arbitrary number of updating components on a single chip. In our

design, floating-point computational cores are employed to process the updates of sub-matrices

of host off-diagonal elements and guest off-diagonal elements in a pipeline, in which limited

number of PEs can perform large-scale updates in parallel. Every time the sub-matrices are

completed with their update, a vector of host off-diagonal elements will be sent leftwards to

www.manaraa.com

23

Figure 3.6: Update component architecture.

the next off-diagonal single update component, and a vector of guest off-diagonal elements

will be transmitted to external memory or looped back as input of another off-diagonal single

update component according to the request.The architecture of our off-diagonal single update

component is shown by the solid lines in Fig. 3.6.

Offdiag′host = Offdiaghost × cos−Offdiagguest × sin (3.8)

Offdiag
′
guest = Offdiaghost × sin+Offdiagguest × cos (3.9)

3.6.3 Off-diagonal double update component

The off-diagonal double update component is responsible to update sub-matrices of off-

diagonals, which have to be processed with two updates successively each time, since both of

their respective columns and rows are involving with the rotations. To integrate all of the

updates affected by two rotations into one component, local memories are used to hold four

triangular sub-matrices of off-diagonal elements, and the number of computational cores is at

least twice as many used in the off-diagonal single update component in order to synchronize

www.manaraa.com

24

with the other components. An example off-diagonal double update component architecture is

shown in Fig. 3.6 with both solid and dashed lines.

3.7 Experiments and evaluations

3.7.1 Implementation and experimental setup

To evaluate our design, we programmed our architecture on a single high-end Xilinx Virtex-

5 FPGA (XC5VLX330) of the Convey HC-2 system [Convey Computer HC-2 (2012)]. In our

implementation, we generated IEEE-754 double-precision floating-point calculators using the

Xilinx Logic IP core generator [Xilinx Inc. (2012)]. In the diagonal Jacobi Rotation component,

eight rotations can be initiated for every 64 clock cycles with double-precision calculators as one

divider, one square root, two adders and three multipliers, among which adders and multipliers

were configured to use dedicated multiplier circuitry (DSPs). In each off-diagonal single update

component, IP core generated Block RAMs are used to hold the sub-matrices of off-diagonal

elements and rotation angle parameters, while one double-precision floating-point adder and two

double-precision floating-point multipliers were implemented by dedicated multiplier circuitry

(DSPs) and logics respectively. The IP cores of adder, multiplier, divider and square root

are configured with latency of 14, 9, 57 and 57 cycles respectively, among which some of the

multiplier or adder may have different latency due to the use of DSPs.

3.7.2 Performance analysis

In our design, maximally, 32 off-diagonal updating components can be allocated on our

target FPGA, in which 31 off-diagonal single update components and one off-diagonal double

update component are included. By evaluating our design at the frequency of 100 Mhz with

6 iterations, which was believed sufficient for convergence on matrices with certain thresholds,

the performance of our design has demonstrated dimensional-dependent speedups from 1.5×

to 15.45× for moderate- to large-sized matrix compared to optimized Matlab 7.10.0 software

SVD solution that was processed on a 2.2 GHz dual core Intel Xeon processor with 16 GB

installed memory as shown in Table 3.1.

www.manaraa.com

25

Figure 3.7: EVD/SVD computation time (in seconds) for symmetric matrix by our design,

Intel MKL and GPU.

Fig. 3.7 demonstrates the quantitative comparison among dimensional dependent execution

times of EVD processing by using different approaches. The blue line demonstrates the EVD

performance by using our architecture while the performance of the Matlab 7.10.0 EVD routine

running on the Intel platform is shown by the red line. The execution time of EVD/SVD

solutions with Intel MLK 10.0.4 and NVIDIA 8800 GPU [Lahabar and Narayanan (2009)],

both of which are using a 2.66 GHz Intel Core 2 Duo CPU, are depicted as green and purple

lines respectively. By analyzing those data points in Fig. 3.7, although GPU-based solution

has demonstrated better efficiency when matrix size grows over thousands, our design is more

efficient for processing matrices up to 2000× 2000.

In Fig. 3.8, the number of floating point operations that are performed in a single update

component after every group of Jacobi rotations is demonstrated. The floating point operations

can be conducted in pipelining with new operation started every clock cycle, and the black line

shows the latency of Jacobi rotation, which is 357 clock cycles. Observations can be made

that the update operations have become an increasingly significant factor to determine the

entire performance as the dimension grows, especially when the update operations take more

clock cycles than the latency of Jacobi rotation, the update operation becomes the performance

www.manaraa.com

26

Figure 3.8: The No. of floating point update operations in a single update component after

each rotation for matrices with various dimensions and partition stategies.

dominant.

Practically, the system performance of our design is dominated by the time consumption

of rotations for small-scale applications; however, when the matrix size grows over a compara-

bly large value such as 512 with certain partition strategy, updates consume more time than

rotating, which incurs a performance degradation. Additionally, to the best of our knowledge,

Ledesma-Carrillo et al. (2011) was the latest and only scalable architecture for FPGA-based

EVD/SVD design; however, its performance suffered from the iterative design and low-capacity

platform they employed, and these previous published results are slower than our results by

two orders of magnitude with a matrix size limitation of 32× 128.

Table 3.1: Proposed architecture performance in speed.

Dimension Our Architecture Matlab Speedup

64× 64 0.00202s 0.0312s 15.45×
128× 128 0.0091s 0.0624s 6.4×
256× 256 0.0320s 0.1428s 4.46×
512× 512 0.2558s 0.5446s 2.2×

1024× 1024 2.0290s 3.0607s 1.5×

www.manaraa.com

27

(a) 2 iterations (b) 4 iterations

(c) 6 iterations (d) 8 iterations

Figure 3.9: Matrix sparsity after processing numeric iterations

3.7.3 Convergence analysis

To analyze the data convergence of our approach, we applied real values from the dataset of

a published digital image research work [Qiu and Vaswani (2011)] using a 1275× 1275 matrix,

to the software model of our approach. By setting the threshold as 0.1, which was 10000

times less than the mean absolute value of the experimental data, the visualized sparsity of

matrices after multiple iterations is shown in Fig. 3.9. We also generated random data with

various dimensions and the mean variance from zero of the off-diagonals after being processed

by different number of iterations are shown in Table 3.2. Both of them indicate reasonable

convergence can be reached using our approach.

www.manaraa.com

28

Table 3.2: Mean variance from zero of the off-diagonals after numeric iterations.

Dimension Origional 2 iterations 4 iterations 6 iterations

64× 64 8.02 8.45×10−5 2.47×10−5 1.16×10−6

128× 128 15.98 6.34×10−4 1.56×10−4 4.86×10−6

256× 256 31.99 1.78×10−4 1.12×10−4 4.26×10−7

512× 512 64.04 4.63×10−4 6.39×10−5 9.18×10−6

1024× 1024 128.04 7.39×10−3 2.7×10−3 8.1×10−5

2048× 2048 256.03 4.93×10−3 3.4×10−3 1.1×10−4

3.8 Conclusion

An efficient reconfigurable FPGA-based hardware architecture is proposed to perform Eigen-

value Decomposition; which employed a novel modified Partitioned-Jacobi algorithm and a

pipelined one dimensional systolic array. The analysis of our architecture demonstrates the

scalability and dimensional dependent efficiency of our design. By applying both real values

from a published digital image research work and randomly generated data to our design,

convergence is demonstrated for our approach. Our proposed framework will be extended to

perform principal component analysis for future work.

www.manaraa.com

29

CHAPTER 4. AN FPGA IMPLEMENTATION OF THE

HESTENES-JACOBI ALGORITHM FOR SINGULAR VALUE

DECOMPOSITION

Modified from a paper published in

Proceedings of 2014 IEEE International Parallel&Distributed Processing Symposium

Workshops (IPDPSW)

Xinying Wang1 and Joseph Zambreno2

4.1 Abstract

As a useful tool for dimensionality reduction, Singular Value Decomposition (SVD) plays

an increasingly significant role in many scientific and engineering applications. The high com-

putational complexity of SVD poses challenges for efficient signal processing and data analysis

systems, especially for time-sensitive applications with large data sets. While the emergence

of FPGAs provides a flexible and low-cost opportunity to pursue high-performance SVD de-

signs, the classical two-sided Jacobi rotation-based SVD architectures are restricted in terms of

scalability and input matrix representation. The Hestenes-Jacobi algorithm offers a more par-

allelizable solution to analyze arbitrary rectangular matrices; however, to date both FPGA and

GPU-based implementations have not lived up to the algorithm’s potential. In this paper, we

introduce a floating-point Hestenes-Jacobi architecture for SVD, which is capable of analyzing

arbitrary sized matrices. Our implementation on an FPGA-based hybrid acceleration system

demonstrates improved efficiency of our architecture compared to an optimized software-based

SVD solution for matrices with small to medium column dimensions, even with comparably

1Primary researcher and author
2Correspondence author

www.manaraa.com

30

large row dimensions. The dimensional speedups can be achieved range from 3.8× to 43.6× for

matrices with column dimensions from 128 to 256 and row sizes from 128 to 2048. Additionally,

we also evaluate the accuracy of our SVD process through convergence analysis.

4.2 Introduction

In many real-world applications, data dimensionality is rapidly growing. Principal Compo-

nent Analysis (PCA) is widely employed to reduce the dimensions of data in high-dimensional

spaces. Among the classical solutions for PCA, Singular Value Decomposition (SVD) is the

most popular technique to approximate high-dimensional data through orthogonal transforma-

tions. SVD-based PCA has been used in many signal processing applications such as image

processing, computer vision, pattern recognition and remote sensing [Xu et al. (2012); Mu

et al. (2011); Liao et al. (2012)]. However, SVD is a computationally-expensive procedure,

which makes its use unlikely to meet the requirements of many time-sensitive designs, espe-

cially when it is processed iteratively in those applications. For instance, in the application of

video surveillance [Candès et al. (2011)], it takes 185.2 seconds to recover the square matrix

with the dimensions of 3000 through running partial SVD 15 times, which makes it difficult

to satisfy stringent real-time performance requirements. As data dimensionality is increasing

continuously, the runtime of SVD is likely to have further substantial growth.

The SVD operation diagonalizes an arbitrary m × n matrix through a series of orthogo-

nal transformations [Trefethen and Bau (1997)]. Optimized software implementations (e.g.,

MATLAB, LAPACK) employ the Householder transformation [Golub and Kahan (1965)] to

perform SVD computation; however, their performance is restricted by their inherent compu-

tational complexity and high data dependency. Highly parallel accelerators such as Graphic

Processing Unit (GPUs) and multi-core platforms have been employed to explore parallel im-

plementations, although these previous works only achieved speedups when the input matrices

have dimensions greater than 1000 [Lahabar and Narayanan (2009); Haidar et al. (2013)].

In the reconfigurable architecture community, systolic-arrays have been implemented on

modern FPGAs to compute the classic two-sided Jacobi rotations [Brent et al. (1985)]. Al-

though improved performance has been demonstrated, the scalability of those implementations

www.manaraa.com

31

are often limited, and the designs are restricted to operate only on the input with squared

matrices.

Hestenes [Hestenes (1958)] discovered the equivalence between zeroing out an off-diagonal

aij and orthogonalizing the ith and jth vectors through plane rotation. Instead of annihilating

every non-zero off-diagonal element by rotating 2× 2 matrices, the Hestenes-Jacobi method is

capable of decomposing an arbitrary m × n non-square matrix through vector computations.

GPUs and FPGAs have been employed to evaluate parallel Hestenes-Jacobi designs; however,

the performance has suffered from the iterative thread synchronizations (in the case of GPUs

[Kotas and Barhen (2011)]) and repeated calculations (in the case of FPGA implementations

[Ledesma-Carrillo et al. (2011)]).

In this paper, we present an FPGA-based hardware design of the Hestenes-Jacobi algorithm

for SVD with floating-point arithmetic, which attempts to analyze an arbitrary m× n matrix.

Compared to a previous FPGA-based Hestenes-Jacobi implementation [Ledesma-Carrillo et al.

(2011)], our architecture optimizes the calculations through improving data reuse, and employs

IEEE-754 double precision floating-point operators to provide a wider dynamic range. Also,

off-chip memory is employed to break the restriction of the analyzable matrix dimensions. Our

experimental results have demonstrated the efficiency of our design for matrices with small

to medium column dimensions, even when they have comparably large row dimensions. The

dimension-dependent speedups that can be achieved range from 3.8× to 43.6× for matrices

with column sizes from 128 to 256 and row dimensions from 128 to 2048. Compared to other

GPU-based and FPGA-based implementations of Hestenes-Jacobi SVD, our architecture is

currently the fastest in terms of overall performance. We have also evaluated the accuracy of

our approach through analysis of the convergence properties.

www.manaraa.com

32

4.3 Theoretical background

4.3.1 Singular Value Decomposition (SVD)

The Singular Value Decomposition transforms an m×n matrix into a product of an m×m

orthogonal matrix, an m×n diagonal matrix with singular values and the transpose of an n×n

orthogonal matrix [Trefethen and Bau (1997)] in the form of eq. (4.1).

Am×n = Um×mΣm×nV
T
n×n (4.1)

4.3.2 Classic two-sided Jacobi rotations

Jacobi rotations are widely used in diagonalizing matrices. To perform Jacobi rotation,

Jacobi rotation matrices J l and Jr are applied to the matrix from both sides as shown in eq.

(4.2). By applying the Jacobi rotation matrices to a 2 × 2 matrix, the off-diagonal elements

are annihilated as in eq. (4.3).

Ai+1 = J liAiJ
r
i (4.2)

J l
′ ·

 App Apq

Aqp Aqq

 ·Jr=
 A”

pp 0

0 A”
qq

 (4.3)

The Jacobi rotation matrices are generated through eq. (4.4) and eq. (4.5), where θ

represents plain rotation angles α or β [Brent et al. (1985)].

Jpp = cos(θ);

Jpq = sin(θ); (p < q)

Jqp = -sin(θ); (p < q)

Jqq = cos(θ);

Jii = 1; (i6= p,q)

Jij = 0, Others.

(4.4)

β+α=arctan(
Aqp +Apq
Aqq −App

) β-α=arctan(
Aqp −Apq
Aqq +App

) (4.5)

www.manaraa.com

33

To process SVD, Jacobi rotations are calculated on every 2 × 2 matrix to zero out all the

non-zero off-diagonal elements. The calculation of an independent 2 × 2 Jacobi rotation only

affects two rows and columns of a matrix, which provides an opportunity for parallel designs

through simultaneously performing independent 2 × 2 Jacobi rotations. Due to the nature of

2× 2 Jacobi rotations, the input matrix is restricted to square dimensions.

4.3.3 Hestenes-Jacobi method

In [Hestenes (1958)], Hestenes observed that the annihilation of a matrix element is equiv-

alent to orthogonalizing two column vectors. Instead of directly annihilating non-zero off-

diagonal elements, the Hestenes-Jacobi algorithm (also known as the one-sided Jacobi method)

performs the matrix decomposition through iterative orthogonal transformations between ev-

ery pair of vectors. In the Hestenes-Jacobi method, the matrix is orthogonalized by columns

through post-multiplying an orthogonal matrix, which is generated through a product of plane

rotations as in eq. (4.6).

A · V = B, where bTi · bj = 0 (4.6)

Next, matrix B is further normalized through the equation B = B · Σ−1 · Σ, in which Σ

is a diagonal matrix with the squared column norms as diagonal elements. Then, by setting

U = B · Σ−1, eq. (4.6) can be rewritten as eq. (4.7), which is the result form of SVD.

A · V = U · Σ ←→ A = U · Σ · V T (4.7)

Compared to the classic two-sided Jacobi rotation approach, the Hestenes-Jacobi method

is capable to analyze an arbitrary rectangular matrix.

4.4 Related work

In recent years, the significant surge of data dimensionality has made the application

of SVD seem ubiquitous [Martin and Porter (2012)]. To compute SVD, the Householder

www.manaraa.com

34

transformation-based method and the Jacobi rotation-based method have demonstrated sat-

isfied stability and accuracy [Chan (1982); Drmac (1997)]. The Householder transformation

[Golub and Kahan (1965); Golub and Reinsch (1970)] is capable of efficiently bi-diagonalizing

matrices through vector computations, which is then followed by iterative implicit QR factor-

ization [Demmel and Kahan (1990)] or divide-and-conquer iterations [Gu and Eisenstat (1995)]

for generating singular values. In Householder transformation-based method, the SVD process

is dominated by the calculations of Householder vectors and their respective updates, whose

performance improvement is challenged by the inherent data dependency. To parallelize the

Householder transformation, implementations have been demonstrated on GPUs [Lahabar and

Narayanan (2009); Kotas and Barhen (2011)] and multi-core platforms [Haidar et al. (2013)],

in which possible accelerations of GPU-based designs are achieved only for matrices with signif-

icantly large dimensions due to the iterative thread synchronization, while, the performance of

implementation on multi-core platform is dominated by the task splitting and time consumption

of communications.

The emergence of reconfigurable fabrics such as FPGAs introduces low-cost solutions to

parallelize the algorithm at the operand-level granularity. To perform SVD, 1-dimensional or

2-dimensional systolic arrays have been employed to parallelize the classic two-sided Jacobi

rotation algorithm [Brent and Luk (1982); Brent et al. (1985); Ahmedsaid et al. (2003); Ma

et al. (2006)]. With the featured independent 2 × 2 rotations, a highly parallel 2-dimensional

systolic array is employed to map the classic two-sided Jacobi rotation algorithm into FPGA

devices with the computational complexity of O(n log n) for an n-by-n square matrix. However,

to fit the architecture on a single chip, the scalability is limited, as n2 processing elements (PEs)

is needed by the systolic array implementation.

www.manaraa.com

35

Compared to the classical Jacobi rotation approach, the Hestenes-Jacobi algorithm provides

a more flexible solution to analyze the rectangular matrices. To explore the high performance

SVD design, FPGAs and GPUs have been employed to demonstrate the parallel implementa-

tions of the Hestenes-Jacobi SVD algorithm [Hestenes (1958)]; however, the performance has

suffered from iterative thread synchronizations for the implementation on GPUs [Kotas and

Barhen (2011)], and the iterative design with duplicated computations in the case of FPGA

implementation [Ledesma-Carrillo et al. (2011)].

4.5 Modified Hestenes-Jacobi algorithm

As previously mentioned, the Hestenes-Jacobi algorithm computes the SVD through or-

thogonalizing every pair of vectors. Instead of directly performing element-wise operations

to annihilate an off-diagonal, the Hestenes-Jacobi method applies orthogonal transformation

between the two vectors whose indexes are equal to the row and column indexes of that off-

diagonal element. To orthogonalize a pair of vectors, Jacobi rotation is computed with the

squared 2-norms of the vectors and the covariance between them.

In the Hestenes-Jacobi process (detailed in Algo. 1), the orthogonalization between two

column vectors is started with the calculation of their squared 2-norms and respective covari-

ance. Then, Jacobi rotation is performed with the calculated squared 2-norms and covariance,

after which, the elements in those two column vectors are updated by applying the generated

rotation angle parameters. At runtime, pairwise orthogonalizations are performed iteratively

until the satisfied convergence is reached. The singular values are obtained as the square root

of the diagonal elements in the resulted matrix.

To optimize the algorithm by reducing the amount of computations, the squared 2-norms

of rotated vectors and their associated covariances are updated directly after each rotation.

Thus, the repeated regeneration of squared 2-norms and covariances has become unnecessary.

In Algo. 1, matrix D is the covariance matrix, whose diagonal and off-diagonal elements are

the squared 2-norms of column vectors and the covariances between them, respectively.

www.manaraa.com

36

Input: matrix A

Output: singular value vector Sig

R← A

/* Generating the squared 2-norms of column vectors and their associated

covariances */

for i← 1 to NumofColumn do

for j ← i to NumofColumn do

Di,j ← RTi ∗Rj
end

end

repeat

for i← 1 to NumofColumn− 1 do

for j ← i to NumofColumn do

/* Generating Jacobi rotation angle parameters with squared

2-norms of column vectors and their respective covariance */

norm1 ← Dj,j ; norm2 ← Di,i; cov ← Di,j

ρ← (norm2 − norm1)/(2 ∗ cov)

t← sign(ρ)/(|ρ|+
√

1 + ρ2)

cos← 1/
√

1 + t2; sin← cos ∗ t
/* Updating the squared 2-norms affected by rotation */

Dj,j ← Dj,j + t ∗ cov; Di,i ← Di,i − t ∗ cov; cov ← 0

/* Updating the covariances affected by rotation */

for k ← 1 to i− 1 do

Dk,i = Dk,i ∗ cos−Dk,j ∗ sin; Dk,j = Dk,i ∗ sin +Dk,j ∗ cos

end

for k ← i+ 1 to j − 1 do

Di,k = Di,k ∗ cos−Dk,j ∗ sin; Dk,j = Di,k ∗ sin +Dk,j ∗ cos

end

for k ← j + 1 to NumofRow do

Di,k = Di,k ∗ cos−Dj,k ∗ sin; Dj,k = Di,k ∗ sin +Dj,k ∗ cos

end

end

end

until convergence reached

for i← 1 to min(NumofColumn,NumofRows) do

Sigi ←
√
Di,i

end
Algorithm 1: Singular value decomposition via Modified Hestenes-Jacobi algo-
rithm

www.manaraa.com

37

Figure 4.1: Block diagram of the Hestenes-Jacobi SVD architecture.

4.6 Our Hestenes-Jacobi SVD architecture

The Hestenes-Jacobi SVD process primarily consists of three computations: (1), calculating

the squared 2-norms of vectors and the covariances between vector pairs; (2), performing Jacobi

rotations with paired squared 2-norms and their respective covariance; (3), updating rotated

vector elements and affected covariances.

To implement the Hestenes-Jacobi SVD, we created three components: the Hestenes pre-

processor, the Jacobi rotation component and the Update operator (shown in Fig. 4.1), all

of which are pipelined. The Hestenes preprocessor is responsible for computing the squared

column 2-norms and the associated covariances. The Jacobi rotation component is used to zero

out the covariance through applying plane rotation with its associated vectors. The Update

operator is employed to update the affected columns and covariances.

The Hestenes-Jacobi SVD is an iterative diagonalization process, which performs the or-

thogonal transformations between every pair of columns by numerous iterations to achieve

www.manaraa.com

38

satisfied convergence. To reduce the amount of computations, instead of repeatedly regen-

erating all the squared 2-norms and covariances in each iteration, our Hestenes-Jacobi SVD

architecture calculates all the squared 2-norms and covariances only in the first iteration, and

then those squared 2-norms and covariances are directly updated and reused in the subsequent

iterations. To reduce the hardware resource usage, the Hestenes preprocessor is reconfigured to

function as an additional Update operator after the first iteration. The square-root operator in

the Jacobi rotation component is employed to finalize the SVD process, from which the singular

values are produced. Besides, as shown in Fig. 4.1, FIFOs are employed to synchronize the

computations and transmit data between the Hestenes preprocessor and the Update operator.

Local BRAMs are used to hold the generated rotation angle parameters cos and sin, and the

covariances whose computations have not been completed with the current vector pairing.

4.6.1 Hestenes preprocessor

The Hestenes preprocessor is responsible for calculating the squared column 2-norms and

the covariances between column vectors, in which ATi ∗ Aj is computed. Considering the

overall system performance, we have to balance the amount of parallel computation with the

I/O requests. In the Hestenes preprocessor (shown in Fig. 4.2), multiple layers of pipelined

multiplier-arrays are devised, in which operands are reused by all the multipliers successively in

a multiplier-array to calculate the partial results of various squared column 2-norms and their

related covariances. The resulting product of a multiplier is summed up with the results of

its corresponding multiplications across layers, whose operands are the matrix elements from

the same columns. For example, in Fig. 4.2, the matrix element Ai,j+3 multiplies with Ai,j at

the first layer, whose product is then added to the product of multiplying Ai+1,j+3 by Ai+1,j

at the second layer, the product of multiplying Ai+2,j+3 by Ai+2,j at the third layer, and the

product of multiplying Ai+3,j+3 by Ai+3,j at the forth layer, whose sum is the partial result of

the covariance between the jth and (j + 3)th columns. Meanwhile, Ai,j+3 moves leftwards to

be applied to the adjacent multiplier for multiplication of Ai,j+3 and Ai,j+1, whose product is

used for computing the covariance between (j + 1)th and (j + 3)th columns.

www.manaraa.com

39

The example input for a single multiplier-array with four multipliers is described in Fig.

4.3, in which the new operand requests for the multiplier array are underlined. The dashed

arrows highlights the data movement for reuse and the dashed circles indicate the entered

operands, which are reused in later computations. In this case, in a single layer, four double-

precision floating-point numbers and at most one double-precision floating-point number are

needed as the input for the starting cycle and every subsequent cycle respectively to perform

the computations on a sub-vector. Then, the computations on different layers are initialized

successively. Thus, 16 cycles are used for the input to obtain the covariance matrix of an 8× 8

matrix if 8 layers of multiplier-arrays are equipped. Additional adders are employed to process

the accumulations of partial results of covariances and squared 2-norms for vectors with the

lengths over 8.

4.6.2 Jacobi rotation component

Jacobi rotation component performs the orthogonal transformation between two column

vectors through a series of operations on their squared column 2-norms and the covariance be-

tween them. To calculate the Jacobi rotations, the CORDIC (for COordinate Rotation DIgital

Computer) algorithm [Meher et al. (2009)] is a popular choice in the research literature, due

to its advantages on efficiently performing complicated trigonometric functions through simple

shift-and-add operations. Although CORDIC has been demonstrated as a hardware-efficient

algorithm for fixed-point operations, its efficient floating-point implementation is challenged by

its inherent bit-width shift-and-add structure. As floating-point arithmetic has become increas-

ingly popular in signal processing applications for its support of a much wider range of values

compared to decimal fixed-point format, our architecture is designed to perform floating-point

calculations by using pipelined IEEE-754 double-precision floating-point operators.

As described in Algo. 1, Jacobi rotation of two column vectors is computed with their

squared 2-norms and covariance through a series of addition, subtraction, multiplication, di-

vision and square-root. The Jacobi rotation equations can be represented as eq. (4.8), eq.

(4.9), eq. (4.10), where n1 and n2 represents the squared 2-norms of column vectors, while the

covariance between them is represented by c1,2. The calculated parameter t is then applied

www.manaraa.com

40

Figure 4.2: Example architecture of the Hestenes preprocessor.

Figure 4.3: Example input to a single layer of multiplier-array.

www.manaraa.com

41

Figure 4.4: Dataflow of the Jocobi rotation procedure.

to update the squared 2-norms of rotated vectors and zero out their covariance. In Fig. 4.4,

the computations of Jacobi rotation is demonstrated, in which independent calculations can be

processed simultaneously. To minimize hardware resource usage, the expensive floating-point

computational cores are reused by those calculations. Once all the orthogonal transformations

are completed, the square-root operator in the Jacobi rotation component is used to generate

the singular values by applying it to the diagonal elements of the processed matrix.

t =
|2 ∗ c1,2|

|n2 − n1|+
√

(n2 − n1)2 + 4 ∗ c2
1,2

(4.8)

cos =

√√√√√(n2 − n1)2 + 2 ∗ c2
1,2 + |n2 − n1| ∗

√
(n2 − n1)2 + 4 ∗ c2

1,2

(n2 − n1)2 + 4 ∗ c2
1,2 + |n2 − n1| ∗

√
(n2 − n1)2 + 4 ∗ c2

1,2

(4.9)

sin = (sign)

√√√√ 2 ∗ c2
1,2

(n2 − n1)2 + 4 ∗ c2
1,2 + |n2 − n1| ∗

√
(n2 − n1)2 + 4 ∗ c2

1,2

(4.10)

www.manaraa.com

42

Figure 4.5: The architecture of a single update kernel.

4.6.3 Update operator

A
′
i = Ai × cos−Aj × sin (4.11)

A
′
j = Ai × sin+Aj × cos (4.12)

The Update operator is responsible for updating column elements and covariances which

are affected by the processed rotations. Generated rotation angle parameters cos and sin are

employed to update the covariances before they are used by later rotations. The update process

for a pair of elements contains simple multiplications, additions and subtractions as is shown in

eq. 4.11 and eq. 4.12. An architecture of a single update kernel is demonstrated in Fig. 4.5, in

which pipelined multipliers, an adder and a subtractor are employed. Multiple update kernels

are included in the Update operator. The number of update kernels that can be allocated to a

single chip is determined by the resource capacity on the chip. This determines the efficiency of

the system, especially for large-scale matrices, where performance is dominated by the amount

of updates after each rotation. The convergence of SVD requires the orthogonal transformation

of the matrix to be performed in numerous iterations. Both individual column elements and

covariances have to be updated in the first iteration, and in the subsequent iterations, only

www.manaraa.com

43

Figure 4.6: Demonstration of employed cyclic order for vector pairing.

covariances are operated. To optimize the use of hardware resources, the Hestenes preprocessor

is able to be reconfigured to function as multiple update kernels.

4.6.4 The cyclic order for vector pairing

The order of vector pairing determines the speed and feasibility of the convergence. In our

design, we employ the cyclic ordering, which was demonstrated with the capability of achieving

convergence efficiently [Brent et al. (1985)]. In Fig. 4.6, cyclic ordering is demonstrated with

32 vectors, in which the numbers represent the column indexes, and the arrows indicate the

direction for the movement of indexes to form the new vector pairs. In the cyclic ordering, each

www.manaraa.com

44

column has to be paired with every other column. The paired vectors are highlighted by solid

boxes in Fig. 4.6. Besides, due to the limited hardware resources on a single chip, a limited

number of vector pairs can be operated simultaneously. In Fig. 4.6, a dashed box highlights

a group of vector pairs, whose computations can be performed in parallel. All the vector-pair

groups enter our Hestenes-Jacobi architecture successively.

4.7 Experiments and evaluations

4.7.1 Implementation and experimental setup

To evaluate the performance of our Hestenes-Jacobi design, a single Xilinx Virtex-5 FPGA

(XC5VLX330) on our Convey HC-2 system [Convey Computer HC-2 (2012)] is used to imple-

ment our architecture. In our implementation, double-precision floating-point computational

cores are generated by using Xilinx Coregen generator [Xilinx Inc. (2012)]. In the Hestenes

preprocessor, four layers of multiplier-array are implemented, in which 16 multipliers and 16

adders are used. To improve the computational intensity on the limited hardware resources,

the Hestenes processor calculates all the squared 2-norms and covariances in the first iteration

of orthogonalization, and it is then reconfigured as four update kernels with 16 multipliers and

8 adders in the remaining iterations. To perform Jacobi rotation, 1 multiplier, 2 adders, 1

divider and 1 square-root calculators are used, which can start 8 independent Jacobi rotations

in every 64 clock cycles. Additionally, an array of eight update kernels are implemented in the

Update operator, which contains 32 multipliers and 16 adders or subtractors. The IP core gen-

erated computational cores are configured with default latencies as 9, 14, 57, 57 clock cycles for

multiplier, adder or subtractor, divider and square-root calculator respectively. Two groups of

eight 64-bit width FIFOs are programmed to synchronize the input and output, while a group

of eight 127-bit width FIFOs are used for the data transmissions between the Hestenes proces-

sor and the Update operator. Simple dual port RAMs are employed to temporarily cache the

rotation angle parameters and some covariances. The whole covariance matrix can be stored in

the local memory for matrices of column dimension no greater than 256. The system is tested

by executing at 150Mhz for 6 iterations, which is believed sufficient for achieving convergence

www.manaraa.com

45

Figure 4.7: No. of floating point operations for our Hestenes-Jacobi SVD on matrices with

various dimensions.

with certain thresholds. Also, a software model is implemented using Matlab to conduct the

convergence evaluation.

4.7.2 Performance analysis

We experimented with both square and rectangular matrices with various dimensions, the

performance of which has been summarized in Table 4.1. The experimental results demonstrate

that the execution time grows significantly as the number of matrix columns increases, which

determines the amount of covariances, whose computation dominates the overall performance.

Comparably, the number of rows, which only affects the execution time of the Hestenes pre-

processing, has smaller impact on the performance. In Fig. 4.7, the number of floating point

operations required for Hestenes-Jacobi SVD on matrix with various dimensions is demon-

strated, in which column dimensions have more significant impact on determining the amount

of floating operations due to only the covariance matrix is operated after the first iteration of

computing, and the size of covariance matrix is determined by the column dimension of the

input matrix.

www.manaraa.com

46

Figure 4.8: The average No. of double precision floating point operands communication requests

per clock cycle for input matrix with various column dimensions.

When the matrix column size grows over 256, the performance is increasingly affected by the

I/O bandwidth due to the increased covariance communications have to be made between our

Hestenes-Jacobi architecture and off-chip memory. Fig. 4.8 demonstrates the average number

of double-precision floating-point I/O requests per clock cycle for input matrix with various

column dimensions. Due to the Hestenes-Jacobi SVD algorithm is column vector oriented, and

the amount of I/O requests is determined by the matrix column dimension. With limited on-

chip storage resources, the number of I/O requests grows as the column dimension increases.

The I/O bandwidth starts affecting the system performance as it grows over 16, which number

is the optimized I/O bandwidth that is provided by our experimental platform.

Comparisons of execution times have been made between our implementation and exper-

imental results from the published literature [Lahabar and Narayanan (2009)] as well as a

Matlab SVD routine. In Fig. 4.9 and Fig. 4.10, the performance of our design, the Matlab

7.10.0 SVD routine running on a 2.2 GHz dual core Intel Xeon processor, SVD solutions with

Intel MLK 10.0.4 and NVIDIA 8800 GPU with 128 stream processors [Lahabar and Narayanan

(2009)] have been demonstrated. By analyzing those data points in Fig. 4.9, our architecture

has better efficiency than other software solutions when matrix with dimensions under 512, and

www.manaraa.com

47

Figure 4.9: SVD computation time (in seconds) for square matrices by our Hestenes-Jacobi

architecture, Matlab, Intel MKL and GPU.

Figure 4.10: SVD computation time (in seconds) for rectangular matrices by our Hestenes-

Jacobi architecture, Matlab, Intel MKL and GPU.

www.manaraa.com

48

Figure 4.11: Speedups of our Hestenes-Jacobi SVD compare to Matlab SVD.

our execution slows down when the dimensions over 512 due to the limits of our chosen plat-

form’s I/O throughput. In Fig. 4.10, the comparison is made between matrices with identical

column dimensions but various row sizes, which indicates the growth of row number causes a

relatively slow increase of the execution time due to the quantity of covariances is determined

by the column size.

In Fig. 4.11, the dimensional speedups of our FPGA-based Hestenes-Jacobi SVD compared

to the Matlab SVD solution running on an Intel platform are presented, in which our Hestenes-

Jacobi architecture shows better efficiency in analyzing matrices with small to medium column

dimensions compared to the standard software solution, even when they are with comparably

large row dimensions. The dimensional speedups that can be achieved range from 3.8× to

43.6× for matrices with column sizes from 128 to 256 and row dimensions from 128 to 2048.

Table 4.2 shows the resource utilization by our Hestenes-Jacobi architecture.

Compared to the experimental results of the latest GPU-based and FPGA-based Hestenes-

Jacobi implementations, our architecture shows the best performance [Ledesma-Carrillo et al.

(2011); Kotas and Barhen (2011)]. In [Ledesma-Carrillo et al. (2011)], the GPU-based imple-

mentation, which ran 106.90ms and 1022.92ms to decompose a 128×128 and a 256×256 matrix

respectively, failed to achieve any speedup compared to a conventional software solution. The

www.manaraa.com

49

Figure 4.12: Convergence process of different dimensional matrices.

FPGA-based design [Kotas and Barhen (2011)] was devised to perform fixed-point operations,

which can only analyze the matrices with the size up to 32 × 128 due to the limitation of

on-chip memory. Although the better performance has been demonstrated compared to their

software execution with Matlab SVD for matrices with dimensions range from 2×2 to 32×127,

our Matlab SVD routine runs 100 times faster than their Matlab SVD, and shares comparable

speeds with their FPGA-based design. In further comparison to [Kotas and Barhen (2011)], in

which 24.3143ms is needed to decompose the largest analyzed matrix with the dimensions of

32 × 127, the execution time of operating a 128 × 128 matrix by our architecture shows more

than 5 times speedup.

Table 4.1: Execution time in seconds.

m\n 128 256 512 1024

128 4.39×10−3 6.30×10−3 1.01×10−2 1.79×10−2

256 2.52×10−2 3.30×10−2 4.84×10−2 7.94×10−2

512 1.70×10−1 2.01×10−1 2.63×10−1 3.87×10−1

1024 1.23 1.35 1.61 2.01

www.manaraa.com

50

Figure 4.13: Convergence process of matrices with column size of 1024 and various row sizes.

Table 4.2: Resource consumption of our Hestenes-Jacobi architecture.

Resource Slice LUT BRAM DSPs

OurArchitecture 89% 91% 53%

4.7.3 Convergence analysis

SVD is a process of diagonalizing matrix through iterative rotations; to evaluate the cor-

rectness and accuracy of the Hestenes-Jacobi produced singular values, the convergence speed

needs to be analyzed. In our evaluation, randomly generated datasets have been applied to

the implemented software model of our Hestenes-Jacobi design. The mean absolute deviations

from zero of the covariances after being processed by a number of iterations are shown in Fig.

4.12, in which covariances between column vectors are rapidly converged to zero as the number

of processing iterations increase. Reasonable convergence can be achieved within 6 iterations

of operations for matrices of dimensions no greater than 2048. Also, similar observations can

be obtained from the convergence performance evaluation of m×n matrices (see Fig. 4.13), in

which the applied datasets are with identical column size of 1024 but various row dimensions.

www.manaraa.com

51

4.8 Conclusion

An FPGA-based hardware architecture is proposed and implemented to perform Singular

Value Decomposition with Hestenes-Jacobi approach; which is capable to analyze arbitrary m×

n rectangular matrix with double-precision floating-point arithmetic. The performance analysis

demonstrates the dimensional-dependent efficiency of our design compared to standard software

solutions, and the better performance compared to other Hestenes-Jacobi implementations on

GPUs and FPGAs. Also, convergence is evaluated by applying random generated datasets with

various dimensions. Our proposed framework will be extended to perform principal component

analysis for latent semantic indexing as the future work.

www.manaraa.com

52

CHAPTER 5. A RECONFIGURABLE ARCHITECTURE FOR QR

DECOMPOSITION USING A HYBRID APPROACH

Modified from a paper published in

Proceedings of 2014 International IEEE Computer Society Annual Symposium on VLSI

(ISVLSI)

Xinying Wang1, Phillip Jones and Joseph Zambreno2

5.1 Abstract

QR Decomposition has been widely used in many signal processing applications to solve lin-

ear inverse problems. However, QR Decomposition is considered a computationally expensive

process, and its sequential implementations fail to meet the requirements of many time-sensitive

applications. The Householder transformation and the Givens rotation are the most popular

techniques to conduct QR Decomposition. Each of these approaches have their own strengths

and weakness. The Householder transformation lends itself to efficient sequential implementa-

tion, however its inherent data dependencies complicate parallelization. On the other hand, the

structure of Givens rotation provides many opportunities for concurrency, but is typically lim-

ited by the availability of computing resources. We propose a deeply pipelined reconfigurable

architecture that can be dynamically configured to perform either approach in a manner that

takes advantage of the strengths of each. At runtime, the input matrix is first partitioned into

numerous sub-matrices. Our architecture then performs parallel Householder transformations

on the sub-matrices in the same column block, which is followed by parallel Givens rotations to

annihilate the remaining unneeded individual off-diagonals. Analysis of our design indicates the

1Primary researcher and author
2Correspondence author

www.manaraa.com

53

potential to achieve a performance of 10.5 GFLOPS with speedups of up to 1.46×, 1.15× and

13.75× compared to the MKL implementation, a recent FPGA design and a Matlab solution,

respectively.

5.2 Introduction

QR Decomposition has been widely used in many signal processing applications such as

MIMO systems [Xue et al. (2013)], beamforming [Liu and McCanny (2003)] and image re-

covery [Qiu and Vaswani (2011)] to calculate the inverse of matrices or solve linear systems.

However, its inherent computational complexity makes it unlikely to satisfy the requirements

of many time-sensitive designs, especially when the system operates on a large-scale dataset.

QR Decomposition is generally considered as an O(n3) operation, and previous research has

shown that more than 10 minutes could be taken to perform QR Decomposition-based robust

Principal Component Analysis on a 110, 592×100 matrix, which is far beyond the requirements

of potential real-time applications such as video surveillance or traffic monitoring [Anderson

et al. (2011)].

The Gram-Schmidt process, Householder transformation and Givens rotation are known

as the most popular algorithms for QR Decomposition [Golub and Van Loan (1996)], among

which, the Householder transformation and the Givens rotation are considered numerical sta-

ble algorithms, while the Gram-Schmidt process provides an opportunity to perform successive

orthogonalizations. Parallel designs have been previously investigated to accelerate QR De-

composition on traditional multi-core systems [Dongarra et al. (2012); Soliman (2011)], GPUs

[Kerr et al. (2009)] and reconfigurable computing platforms [Wang and Leeser (2009); Tai et al.

(2011); Rafique et al. (2012); Aslan et al. (2012)].

www.manaraa.com

54

The Householder transformation is efficient in its vectorized operations. However, paral-

lelization of the Householder transformation is challenged by the data dependencies among vec-

tors [Leoncini et al. (1996)]. To help mitigate the issue of data dependency, a tiled QR Decom-

position (also known as the blocked Householder transformation) was proposed [Bouwmeester

et al. (2011)], and has been demonstrated to better exploit the parallelism available on multi-

core CPUs [Dongarra et al. (2012)], GPU [Kerr et al. (2009)] and FPGAs [Rafique et al. (2012);

Tai et al. (2011)].

The Givens rotation provides better opportunities for highly parallel designs. However,

the scalability of Givens rotation-based QR Decomposition is typically limited by the O(n2)

processing elements (PEs) needed to fully parallelize those rotations for an n × n matrix [El-

Amawy and Dharmarajan (1989)]. A two-dimensional systolic array was devised for fast parallel

Givens rotations on a single FPGA [Wang and Leeser (2009)]. However, the scalability was

severely restricted due to the large amounts of resources required.

In this chapter, we present a hybrid approach that leverages the strengths of both House-

holder transformation and Givens rotation by applying the most appropriate of the two at

each stage of the QR Decomposition process. We propose a reconfigurable architecture for QR

Decomposition, which can be dynamically configured to perform either Householder transfor-

mation or Givens rotation, both of which are deeply pipelined. To process large data sets, the

input matrix is partitioned into multiple columns of sub-matrices. The sub-matrix columns

are processed successively, while the sub-matrices in the same column are applied with parallel

independent Householder transformations. Then, the dense sub-matrix column is transformed

into numerous upper triangular sub-matrices, on which highly parallel Givens rotations are

performed to annihilate the remaining non-zero elements. Our experimental results show our

design can achieve 10.5 GFLOPS with speedups of up to 1.46×, 1.15× and 13.75× compared

to the Intel Math Kernel Library (MKL) implementation on a single CPU core [Buttari et al.

(2009)], an FPGA-based tiled matrix decomposition [Tai et al. (2011)], and a single threaded

Matlab routine, respectively.

www.manaraa.com

55

5.3 Theoretical background

5.3.1 QR Decomposition

QR decompostion of an m× n matrix A has a form given by eq. (6.1)

A=QR (5.1)

where Q is an m×m matrix, which is an orthogonal matrix such that QT ·Q = I, and R is

an m× n upper triangular matrix [Golub and Van Loan (1996)].

5.3.2 Householder transformation

The Householder transformation [Golub and Van Loan (1996)] is a linear process that

reflects a vector through a plane containing the origin. The transformed vector is orthogonal

to and has the same norm as the original vector. To perform the linear reflection of a vector x,

the Householder matrix as shown in eq. (5.2) is employed, in which v is a unit vector orthogonal

to the plane.

H= I - 2vvT (5.2)

To perform the transformation so that all the elements in the transformed vector below the

first entry are zero, the unit vector v can be constructed as shown in eq. (5.3) and eq. (5.4),

where e is a unit vector (1, 0, 0, · · · , 0)T .

u= x+‖x‖e (5.3)

v=
u

‖u‖
(5.4)

www.manaraa.com

56

By applying the Householder matrix, the householder transformation is performed, eq.

(5.5), where c is ±‖x‖.

H ·

x1

x2

x3

· · ·

xn

=

c

0

0

0

0

(5.5)

5.3.3 Givens rotation

The Givens rotation introduces zeros to matrices through plane rotations. After determining

the plane rotation angle (θ) for paired elements, as shown in the eqs. (5.7,5.8,5.9), zero elements

can be introduced by conducting rotations in the form of eq. (5.6) [Golub and Van Loan (1996)].

Since only two elements are operated on in a single rotation, the Givens rotation provides better

opportunities to process individual components in parallel.

 cos θ sin θ

− sin θ cos θ

a
b

 =

x
0

 (5.6)

x =
√
a2 + b2 (5.7)

cos θ =
a

x
(5.8)

sin θ =
−b
x

(5.9)

5.4 Related work

The numerical stability and sequential implementation efficiency of the Householder trans-

formation has lead it to be employed in many standard software packages (e.g. Matlab, LA-

PACK) [Walker (1988)]. Parallel implementations of the Householder transformation have

www.manaraa.com

57

been investigated on multi-core systems, GPUs and reconfigurable computing platforms [Soli-

man (2011); Kerr et al. (2009); Rafique et al. (2012)]. However, the performance improvement

is challenged by its inherent data dependencies. Although the tiled matrix [Bouwmeester et al.

(2011)] was introduced to efficiently partition data sets, near ideal speedups on multi-core

platform-based or GPU-based designs are achieved only for matrices with large dimensions

due to heavy inter-core communication [Soliman (2011); Kerr et al. (2009)]. In [Rafique et al.

(2012)], an efficient FPGA-based QR decomposer for tall-skinny matrices was presented. An

additional concern with this decomposer is that during the merge stage parallelism decreases

as the quantity of intermediate results reduce.

The Givens rotation has been proven to be the most accurate and stable approach for QR

Decomposition [Golub and Van Loan (1996); Gentleman (1975)]. Compared to the Householder

transformation, the Givens rotation provides more opportunities for parallelism, especially

when annihilating individual isolated elements. In [El-Amawy and Dharmarajan (1989); Wang

and Leeser (2009); Echman and Owall (2005)], a 2-dimensional systolic array was employed

to demonstrate the parallel implementation of Givens rotation in hardware. However, their

scalability was constrained due to the limited resources on a single chip. As demonstrated in

[Echman and Owall (2005)], 86% of a Virtex-II FPGA’s resources were consumed to factorize

a 4× 4 matrix. Our proposed architecture looks to leverage the benefits of both the sequential

efficiency of the Householder transformation and parallelizability of Givens rotation by using a

hybrid approach.

5.5 Hybrid QR algorithm

As previously mentioned, the Householder transformation is able to efficiently zero out all

the components of a vector below the first entry. However, its inherent data dependency makes

parallelization challenging. The Givens rotation provides better opportunities to pursue paral-

lelism and more flexibility for processing individual isolated elements. However, decomposing

a large dense matrix by Givens rotation requires a large number of rotation operations. To im-

prove the performance of QR Decomposition by combining the advantages of both algorithms,

our approach divides the input matrix into a number of sub-matrices, on which local House-

www.manaraa.com

58

(a) p× p sub-matrices (b) p× q sub-matrices

Figure 5.1: An example sub-matrix partition of an m×m matrix for our Hybrid QR Decom-

position algorithm.

holder transformations are performed in parallel on sub-matrices in the same column block.

Then, parallel Givens rotations are employed to annihilate the remaining isolated non-zero

lower triangular elements. Compared to [Rafique et al. (2012)], which targeted tall-skinny ma-

trices and employed the Householder transformation both to factorize sub-matrices and merge

the transformed sub-matrices, Givens rotations are better for conducting parallel processing at

the merge stage, especially when floating-point arithmetic is used, whose computations have

relatively long latencies. In addition, the Givens rotation can potentially achieve additional

acceleration when factorizing partially sparse matrices.

In our hybrid QR Decomposition algorithm, the input matrix is divided into m × n sub-

matrices. The sub-matrices from the same columns can be processed in parallel both for

factorization and updates, while sub-matrices having the same row indices are processed suc-

cessively from left to right. The factorization process and update operation can be performed

simultaneously if no data dependencies exist between them. The sub-matrices can either be

square as shown in Fig. 5.1a, or rectangular, as shown in Fig. 5.1b. As demonstrated in Fig.

5.1, the lower triangular part of the matrix has been transformed into a number of upper trian-

gular sub-matrices (as depicted by the shaded area) by parallel Householder transformations,

which then will be annihilated by parallel Givens rotations.

www.manaraa.com

59

Figure 5.2: Block diagram of our Hybrid QR Decomposition architecture.

5.6 Our architecture for QR Decomposition

A reconfigurable computing platform provides a flexible medium for dynamically configuring

our architecture to perform either the Householder transformation or the Givens rotation algo-

rithm. The detailed calculations of the Householder transformation algorithm and the Givens

rotation approach are described in Table 5.1, both of which can be primarily summarized as

three steps: a) preprocessing, b) factorization, and c) matrix updates. In the preprocessing

stage, the Householder transformation employs vector-vector multiplication to compute the

squared vector norms, while the Givens rotation performs multiplication-addition operations,

both computations are required during the matrix update phase. To help optimize hardware

resource usage, a deeply pipelined component is devised that performs both preprocessing and

matrix update operations. Fig. 5.2 provides a high-level block diagram of our hybrid QR

Decomposition architecture. The matrix updates/preprocessing component and the factoriza-

tion component are the pipelined computational engines. RAMs are employed to temporarily

hold the generated Householder vectors and Givens rotation parameters. Additionally to help

reduce communication overheads, the current processing sub-matrix column and the adjacent

www.manaraa.com

60

Figure 5.3: Matrix updates/preprocessing component architecture.

sub-matrix columns are kept in local memory. The adjacent sub-matrix column is moved to

the local storage of current processing sub-matrix column when all its respective updates have

completed. The number of sub-matrix columns that can be held on chip is determined by the

amount of on-chip resources as well as the matrix dimensions.

5.6.1 Preprocessing component

The preprocessing component is responsible for producing the squared vector norms for

the Householder transformation and square sums for the Givens rotations. To calculate the

squared vector norms, a reverse binary tree structure was implemented as shown in Fig. 5.3.

www.manaraa.com

61

Table 5.1: Hybrid QR Decomposition approach computations.

Phases Householder Givens Rotation

Preprocessing
x←

Ri,i

Ri+1,i

Ri+2,i

· · ·
Rn,i

t1 ← Ri,i

t2 ← Rj,i

t← t21 + t22v1 ← R2
i,i +R2

i,i+1 · · ·+R2
n,i

Factorization

e1 ←
√
v1 r ←

√
t

v2 ← (Ri,i − e1)2 +R2
i,i+1 · · ·+R2

n,i cosθ = t1
r

e2 ←
√
v2 sinθ = − t2

r

x1 ← Ri,i − e1 Ri,i ← r
u← x

e2
Rj,i ← 0

Matrix R← R− 2 ∗ u ∗ uT ∗R
k ← 1 to NumofColumn

Updates

[
Qk,i

Qk,j

]
←
[
cosθ sinθ
sinθ cosθ

] [
Qk,i

Qk,j

]

The top level is equipped with n multipliers, under which there are dlog (n)e levels of adders.

An additional adder is employed as an accumulator when the vector length is greater than

the number of multipliers. Only the multipliers and top level adders are used to perform

preprocessing for Givens rotation. To save hardware resources, the preprocessing component

is implemented as part of the matrix update component.

5.6.2 Factorization component

e1 =
√
R2
i,i +R2

i+1,i · · ·+R2
n,i (5.10)

e2 =
√

(Ri,i − e1)2 +R2
i+1,i · · ·+R2

n,i

=
√
R2
i,i − 2 ∗Ri,i ∗ e1 + e2

1 +R2
i+1,i · · ·+R2

n,i

=
√

2 ∗ (R2
i,i +R2

i+1,i · · ·+R2
n,i −Ri,i ∗ e1) (5.11)

The factorization component uses a unified architecture to perform both the Householder

transformation and the Givens rotation. Fig. 5.4 illustrates this reconfigurable architecture

as a data flow graph. All of the computational cores are deeply pipelined, and factorization

can be switched between the Householder transformation and the Givens rotation seamlessly.

www.manaraa.com

62

Figure 5.4: Dataflow view of the factorization component.

FIFOs are employed to synchronize the data streams, while FSM-based control units are used

to manage the runtime configuration of the architecture.

For the Householder transformation, whose input is the original untransformed vector and

the sum of its squared vector elements, the process is started by computing the L2-norm e1

with the square root operation as shown in eq. (5.10), where i is the index of the column

vector within a sub-matrix and n is its row dimension. In parallel, additions are performed

by a pair of adders to calculate 2 ∗ Ri,i and 2 ∗ (R2
i,i + R2

i+1,i · · · + R2
n,i) respectively, in which

Ri,i is the first entry of the input vector. Then, a multiplier is used to multiply 2 ∗ Ri,i by e1,

which is followed by the subtraction, 2 ∗ (R2
i,i + R2

i+1,i · · · + R2
n,i) − 2 ∗ Ri,i ∗ e1, whose result

www.manaraa.com

63

is the square of e2 (eq. 5.11). To obtain the Householder vector, a division calculates x
e22

, in

which e2
2 is the result of the subtractor and x is identical to the input vector except the first

entry has been transformed to x1 − e1. Since the use of a Householder vector is in the form of

vector-vector multiplication (xe2 ∗
x′

e2
) in the subsequent matrix updates, its computation can be

replaced by x* x
′

e22
. This makes the square root operation of e2

2 unnecessary. The final output of

the Householder transformation is the Householder vector x
e22

and e1, the first and only non-zero

entry of the transformed vector.

To perform the Givens rotation, paired matrix elements and the sum of their squares are

entered. The square root operation is employed to compute
√
a2 + b2, after which a√

a2+b2
and

b√
a2+b2

are calculated by the divider to produce the Givens rotation parameters cos θ and sin θ

respectively.

5.6.3 Matrix update component

As described in Table 5.1, the update process of the Householder transformation is con-

ducted through matrix-vector operations, while the Givens rotation uses simple element-wise

multiplications and additions/subtractions to update the affected matrix entries. The brute-

force way to compute R ← R − 2 ∗ u ∗ uT ∗ R is started by the vector-vector multiplication

u ∗ uT , whose result is a matrix. Then, the result matrix is multiplied by matrix R, which

makes the time complexity of the update process O(n3). To help optimize the computation,

uT ∗ R is calculated first, whose product is a row vector. Next, vector-vector multiplication

is performed. This reduces the time complexity of the update process to O(n2), thus largely

reducing computational workload, especially for large-scale data sets.

www.manaraa.com

64

Fig. 5.3 illustrates the update component architecture. The reverse binary tree structure

is responsible for vector-matrix multiplication, while the multipliers in the lower half of the

architecture are employed to perform vector-vector multiplication, which is followed by adders

to double the results from the multipliers. The Householder transformation update process

ends with subtractions. The Givens rotation updates only use the multipliers and the first

level of adders below those multipliers. Just as for the factorization component, the architec-

ture is deeply pipelined and can be configured to perform updates for either the Householder

transformation or the Givens rotation.

5.6.4 I/O considerations

In our design, the input matrix is assumed to be stored in an off-chip memory. Only the

column of sub-matrices under processing and their adjacent sub-matrix columns are temporally

held on-chip. The number of sub-matrices that can be kept on-chip is determined by the

sub-matrix dimension and the capacity of on-chip memory. Our analysis indicates that on

average only 4 double-precision floating-point operands need to be communicated between the

architecture and the off-chip memory each clock cycle to factorize a 1024× 1024 matrix, which

consists of 16× 16 sub-matrices based on the available on-chip memory.

5.7 Implementation and evaluation

5.7.1 Implementation and experimental setup

Our design is implemented in VHDL on a single Xilinx Virtex-5 XC5VLX330 FPGA of

the Convey HC-2 platform [Convey Computer HC-2 (2012)], for which eight memory con-

trollers with a total of 16 DDR2 channels are available. Our architecture uses double-precision

floating-point IP cores [Xilinx Inc. (2012)] that are configured to use 9, 14, 57 and 57 pipeline

stages for multipliers, adders/subtractors, dividers and square roots respectively. The usage

of double-precision computational cores of our hardware implementation is presented in Ta-

ble 5.2. All multipliers, dividers and square roots are implemented as LUT logic only, while

adders/subtractors are configured to use LUT logic or dedicated multiplier circuitry (DSPs). To

www.manaraa.com

65

avoid bottlenecks incurred by the bandwidth of on-chip memories, high-bandwith BRAMs are

needed. To improve the flexibility of data usage, instead of using single ported high-bandwith

BRAMs, simple dual-ported BRAMs were employed, for which each BRAM was configured

with a width of 64-bits for input and output ports. Besides, a number of FIFOs with configu-

rations of both width and depth as 64 are deployed in modules to buffer the data communicated

among different computational components of this architecture. The detail on-chip memory

usage is demonstrated in Table 5.3. The Xilinx design tools reported that our placed and

routed design consumes 85.7% of the slice LUTs, 84.4% of DSP48Es and 79.5% of BRAMs.

Re-synthesis is required if the input matrix or sub-matrix dimensions are changed.

Table 5.2: The usage of floating-point double-precision computational cores in numbers.

Modules
Factorization Preprocessing&

Total Latency
component Matrix Update

Multipliers 1 32 33 9

Adders/Subtractors 4 48 52 12

Dividers 1 0 1 57

Squareroots 1 0 1 57

Table 5.3: On-chip memory usage in our hardware implementation.

Modules
Factorization Preprocessing &

Others
Component Matrix update

FIFOs 14 17 16

36kBRAMs 14 31 165

18kBRAMs 0 1 1

5.7.2 Performance analysis

In Fig. 5.5, the clock cycles that are used to perform QR Decomposition on various dimen-

sional data sets with different matrix partition strategies are demonstrated, which indicates

the matrix partition would improve the parallelism for performing QR factorization; however,

the partition strategy plays significant roles on the performance of the hybrid approach. As

www.manaraa.com

66

Figure 5.5: The clock cycle counts for our QR Decomposition computing on matrices with

various dimensions and partitions.

it is shown in Fig. 5.5, different sized matrix have to be applied with their respective appro-

priate matrix partition strategy to maximize the efficiency, which is impact by many factors

such as the data-dependencies, computational latency of parameter generation and matrix up-

dates. To partition the matrix into tall-skinny sub-matrices could achieve better efficiency;

however, the key criteria is to balance the computation of Householder Transformation and

Givens Rotations.

We use GFLOPS (Giga FLoating-point Operations Per Second) as our metric to compare

dimensional and partition-dependent performance. In Fig. 5.7a, the performance of our QR De-

composition architecture running at a frequency of 150 MHz is demonstrated, in which different

dimensional matrices are applied and various partition strategies are evaluated. Dimensional

peak performance is achieved with partitioned sub-matrices of different sizes. Parallelism is

able to reduce the idle time of floating-point cores caused by the latencies of accumulation due

to vector lengths greater than the number of multipliers used for calculating the norms (16

in our case). Thus, the number of partitions in one sub-matrix column dictates efficiency. In

our implementation, at least 16 sub-matrices are needed in a sub-matrix column for efficient

computation. This number is the same as the latency of the floating-point accumulator. Pro-

cessing a sub-matrix column may introduce idle time for computational cores as the number of

www.manaraa.com

67

Figure 5.6: Performance comparison with single core, multi-core, GPU and recent FPGA work.

elements needing processing decreases. Therefore, to obtain the best dimensional performance

for square matrices, the number of sub-matrix columns has to be minimized, while sufficient

parallelism is maintained.

In Fig. 5.7b, rectangular matrices are evaluated, in which the number of sub-matrices in

a sub-matrix column is equal to that in a sub-matrix row. As row dimension increases, the

rectangular sub-matrix becomes more skinny, thus performance improves as more parallelism

is achieved, while the remaining elements after the Householder transformation is reduced.

We have also analyzed the average I/O requests for our QRD hardware implementation

with input matrix partitioned into 16× 16 sub-matrices (see Fig. 5.8). Due to the limited on-

chip resources, not all the intermediate data can be stored on chip when the matrix dimension

grows over 512 × 512. When intermediate data are hold on-chip, the average I/O requests

will be reduced as the column dimensions grow, due to the increase of the latency for parallel

Householder transformations. The use of off-chip memory for intermediate data would increase

the number of I/O requests, and the system performance will be degraded when the required

amount of I/O communications surpass the provided bandwidth of experimental platform (16

in our case).

www.manaraa.com

68

(a) square matrices with square sub-matrices

(b) rectangular matrices with rectangular sub-matrices

Figure 5.7: The performance of our architecture for performing QR Decomposition on square

and rectangular matrices.

www.manaraa.com

69

Figure 5.8: The average No. of double precision floating point operands communication requests

per clock cycle for input matrix with various dimensions.

We compare the performance of our design with the results of CPU based MKL implemen-

tations [Buttari et al. (2009)], a GPU implementation [Tomov et al. (2010)], a Matlab routine

and a recent FPGA work [Tai et al. (2011)] in Fig. 5.6. Our design shows speedups of up

to 1.46×, 1.15× and 13.75× compared to the MKL implementation on a single core [Buttari

et al. (2009)], FPGA-based tiled matrix decomposition [Tai et al. (2011)] and Matlab routine

respectively. We are able to achieve 10.5 GFLOPS, which is 80.5% of the theoretical maxi-

mum computation throughput of our design (i.e. 87 floating-point cores × 150 MHz = 13.05

GFLOPS). In [Rafique et al. (2012)], they have demonstrated the performance of FPGA, GPU

and CPU (MKL) implementations, although their implementation shows better performance

for their FPGA-based tall-skinny matrix QR decomposer, a Virtex-6 SX475T is employed which

provides a much higher clock frequency and more computing resources than our platform.

5.8 Conclusion

A reconfigurable architecture is proposed and implemented on an FPGA-based platform to

perform QR Decomposition, which exploits both the advantages of the Householder transfor-

mation in its efficient vectorized computation and the Givens rotation in its flexible and highly

parallel operations. The architecture can be configured to perform either the Householder

www.manaraa.com

70

transformation or the Givens rotation at runtime, in which the Householder transformations

are employed to transform the sub-matrices from dense to triangular, while the Givens rotation

is used to zero out the remaining unneeded non-zero elements. Our experimental results show

our design can achieve a performance of 10.5 GFLOPS with speedups of up to 1.46×, 1.15×

and 13.75× compared to a MKL implementation, a recent FPGA design and a Matlab solution

respectively. For future work, we plan to explore potential applications of our architecture (e.g.

beamforming, image recovery).

www.manaraa.com

71

CHAPTER 6. A CONFIGURABLE ARCHITECTURE FOR SPARSE LU

DECOMPOSITION ON MATRICES WITH ARBITRARY PATTERNS

Modified from a paper published in

Proceedings of 2015 International Symposium on Highly-Efficient Accelerators and

Reconfigurable Technologies (HEART)

Xinying Wang1, Phillip Jones and Joseph Zambreno 2

6.1 Abstract

Sparse LU Decomposition has been widely used to solve sparse linear systems of equations

found in many scientific and engineering applications, such as circuit simulation, power sys-

tem modeling and computer vision. However, it is considered a computationally expensive

factorization tool. While parallel implementations have been explored to accelerate sparse LU

Decomposition, irregular sparsity patterns often limit their performance gains. Prior FPGA-

based accelerators have been customized to domain-specific sparsity patterns of pre-ordered

symmetric matrices. In this paper, we present an efficient architecture for sparse LU Decom-

position that supports both symmetric and asymmetric sparse matrices with arbitrary sparsity

patterns. The control structure of our architecture parallelizes computation and pivoting oper-

ations. Also, on-chip resource utilization is configured based on properties of the matrices being

processed. Our experimental results show a 1.6 to 14× speedup over an optimized software

implementation for benchmarks containing a wide range of sparsity patterns.

1Primary researcher and author
2Correspondence author

www.manaraa.com

72

6.2 Introduction

Many important scientific and engineering applications (e.g. circuit simulation [Chen et al.

(2015, 2013)], power system modeling [Yu and Wang (1990)], and image processing [Donoho

and Tsaig (2008)]) have at their core a large system of sparse linear equations that must be

solved. Sparse LU Decomposition has been widely used to solve such systems of equations, but

it is considered a computationally expensive factorization tool.

Left-looking, Right-looking and Crout are the main direct methods for sparse LU Decom-

position, but are not efficient when implemented in software. Supernodal [Cleveland Ashcraft

et al. (1987)] and Multifrontal [Duff and Reid (1983)] are approaches that lend themselves

well to software implementations of sparse LU Decomposition. Supernodal considers the input

matrix as sets of continuous columns with the same nonzero structure, while Multifrontal orga-

nizes large sparse datasets into small dense matrices. Parallel implementations of Supernodal

and Multifrontal have been demonstrated on multi-core platforms and GPUs with shared or

distributed memory [Chen et al. (2013, 2015); Demmel et al. (1999); G̊artner (2004)]. How-

ever, Supernodes may not exist in some applications, and it is a challenge to parallelize the

Multifrontal method in a distributed memory system.

Although many FPGA-based architectures have been proposed for accelerating LU Decom-

position of dense matrices, only a few have been proposed for accelerating sparse matrix LU

Decomposition [Kapre and DeHon (2009); Siddhartha and Kapre (2014a,b); Vachranukunkiet

(2007); Wu et al. (2012)]. Of these architectures, they either target domain-specific sparsity

patterns [Kapre and DeHon (2009); Siddhartha and Kapre (2014a,b); Vachranukunkiet (2007)],

or require a pre-ordered symmetric matrix [Wu et al. (2012)].

In this paper, we propose an FPGA-based architecture for sparse LU Decomposition, which

can efficiently process sparse matrices having arbitrary sparsity patterns. Our architecture

mitigates issues associated with arbitrary sparsity patterns and extracts parallelism in two

primary ways. First, it factorizes columns from the lower triangular part of a matrices in

parallel with factorizing rows from the upper triangular part of the matrix. Second, our control

structure performs pivoting operations in parallel with the factorizations of rows and columns.

www.manaraa.com

73

8 0 4 0 0 7

0 5 0 0 0 0

3 0 0 3 0 0

0 0 2 −1 0 0

0 0 0 0 4 0

0 7 0 0 0 3

(a) Example sparse matrix

(b) Compressed Sparse Column format (c) Compressed Sparse Row format

Figure 6.1: Compact storage formats for sparse matrices

Our experimental results show a 1.6 to 14× speed up over an optimized software implementation

for benchmarks containing a wide range of sparsity patterns.

6.3 Theoretical background

6.3.1 Sparse LU Decomposition with pivoting

LU Decomposition factorizes a matrix A into two matrices, L and U , as shown in eq. (6.1)

A=LU (6.1)

Here, A is an m × n matrix, L is an m × n lower triangular matrix, and U is an n × n

upper triangular matrix. This linear process is called sparse LU Decomposition when matrix

A is sparse.

Sparse matrices commonly appear in a broad variety of scientific and engineering appli-

cations. These matrices are characterized by having relatively few non-zero elements. This

property can be leveraged to store them in efficient formats. The two most popular of these

formats are Compressed Sparse Column (CSC) format and Compressed Sparse Row (CSR).

Fig. 6.1 illustrates the CSC and CSR format of a sparse matrix. Both CSC and CSR formats

consist of three components: 1) an array of non-zero values, 2) an integer array of row or col-

www.manaraa.com

74

umn indexes of those non-zero elements, and 3) an array of pointers where each element points

the first non-zero element of a column or a row.

Stability and Accuracy. To ensure stability during LU Decomposition, pivoting operations

are performed to remove zero elements from the diagonal of matrix A. This can be accomplished

conceptually by applying a pivoting matrix, P , to matrix A as PA=LU. P is an m×m matrix

in which each column has one element of value 1 and all other elements are 0 [Golub and

Van Loan (1996)].

6.3.2 Algorithms for sparse LU Decomposition

Direct methods for sparse LU Decomposition include Left-looking, Right-looking, and Crout

[Press et al. (2007)], which generally contain division operations and update processes (see

Fig. 6.2).

6.3.2.1 Left-looking

The Left-looking algorithm factorizes a matrix in a column-by-column manner. Before

normalizing a given column, non-zero elements of the previously factored column are used to

update the current column elements A(i, j) using the equation A(i, j) = A(i, j)−L(i, k)∗U(k, j),

where k = 1 · · ·min(i, j) (see Fig. 6.2a).

6.3.2.2 Right-looking

The Right looking algorithm first factorizes a column from the lower triangular part of

a matrix, then uses the resulting non-zero elements of that column to update the affected

components in the rest of the matrix by using the equation A(i, k) = A(i, k)−L(i, j) ∗U(j, k),

where k = j+1 · · ·N , j is the index of current factored column, and N is the column dimension

of matrix A (see Fig. 6.2b).

6.3.2.3 Crout

Similarly to the Left-looking algorithm, the Crout method performs updates with previously

factored elements before normalizing a given vector. The difference is that the Crout method

www.manaraa.com

75

(a) Left-looking (b) Right-looking

(c) Crout

Figure 6.2: Popular algorithms for sparse LU Decomposition

www.manaraa.com

76

operates both on columns and rows, while the Left-looking algorithm only operates on columns

(see Fig. 6.2c).

6.4 Related work

FPGA architectures have been shown to be effective in accelerating a wide range of matrix

operations. However, accelerating the LU Decomposition of large sparse matrices with arbi-

trary sparcity patterns is a challenge for hardware acceleration. In [Vachranukunkiet (2007)],

the authors propose an efficient sparse LU Decomposition architecture targeting the power flow

analysis application domain. Their FPGA-based architecture implements the right looking al-

gorithm and includes hardware mechanisms for pivoting operations. The performance of their

architecture is primarily I/O bandwidth limited. Kapre et al., in [Kapre and DeHon (2009);

Siddhartha and Kapre (2014a)], introduced an FPGA implementation of sparse LU Decompo-

sition for the circuit simulation application domain. A matrix factorization compute graph is

generated to capture the static sparsity pattern of the application domain, and it is exploited

to distribute the explicit data flow representation of computation across processing elements.

For their approach, they also illustrate that their performance gains are highly sensitive to

the manner in which computations are distributed across the available processing elements.

Wu et al., in [Wu et al. (2012)], devised a more general hardware design to support sparse

LU Decomposition for a wider range of application domains. Their architecture parallelizes

the left-looking algorithm to efficiently support processing symmetric positive definite or di-

agonally dominant matrices. One factor limiting the performance of their architecture arises

from dynamically determining data dependency during their column-by-column factorization,

which leads to their processing elements stalling for the purpose of synchronizing to resolve

data dependency across processing elements.

6.5 The parallel sparse LU Decomposition algorithm

In general, the process of LU factorization primarily consists of pivot, division, and update

operations. These operations can be performed in parallel when no data dependencies exist

www.manaraa.com

77

1: [m n]← size(A);

2: for i← 1 to minm,n do

3: {1.Perform pivoting operations in parallel};
4: A(i, i)← max(A(:, i));

5: for j ← 1 to n do

6: A(i, j)↔ A(max index, j);

7: end for

8: {2.Update column entries before division in parallel};
9: for j ← i to m do

10: if FL(j, k) ∈ block(pidrow) then

11: A(j, i)← A(j, i)− FL(j, i);

12: end if

13: end for

14: {3.Parallelized division operations};
15: for j ← i+ 1 to m do

16: if A(j, i) 6= 0 then

17: L(j, i)← A(j, i)/A(i, i);

18: end if

19: end for

20: {4.Update row entries after division in parallel};
21: for k ← i+ 1 to n do

22: if FU (j, k) ∈ block(pidcol) then

23: U(i, k)← A(i, k)− FU (i, k);

24: end if

25: end for

26: {5.Calculate Update factors in parallel}
27: for z ← 1 to i do

28: for j ← z + 1 to m(or n) do

29: for k ← i+ 1 to i+ 1 + block size do

30: if L(j, i) 6= 0 and U(i, k) 6= 0 and FL(j, k)(or FU (j, k)) ∈ block(pidrow(or

pidcol)) then

31: FL(j, k) = FL(j, k) + L(j, i) ∗ U(i, k)

32: (or FU (j, k) = FU (j, k) + L(j, i) ∗ U(i, k))

33: end if

34: end for

35: end for

36: end for

37: end for
Algorithm 2: Our parallel sparse LU Decomposition algorithm

www.manaraa.com

78

Figure 6.3: Two examples of block partitioning.

among them. Our architecture aims to extract this type of parallelism specifically from the

Crout method of sparse LU Decomposition at three different levels: 1) we leverage the fact

that the structure of the Crout method naturally allows parallelization of processing columns

and rows from the lower and upper triangular part of a matrix respectively (Fig. 6.2c), 2)

we perform block partitions of the matrix to identify elements for which update operations

can be performed in parallel and thus share an update processing element (see Fig. 6.3, the

computations of matrix elements in the blocks with identical shaded pattern can be assigned

to the same update processing element), and 3) the structure of the architecture control logic

performs pivot operations in parallel with update and division operations.

6.6 The sparse LU Decomposition architecture

Our architecture consists of four primary types of processing elements: 1) Input, 2) Update,

3) Division, and 4) Pivot. Fig. 6.4 provides a high-level view of how these processing elements

are related within our architecture.

As a brief summary of the flow of data through our architecture, the Input processing

elements are responsible for the initial processing of columns from the lower triangular part of

the matrix and rows from the upper triangular part of the matrix. The output of the Input

processing elements is then forwarded to the Update processing elements, which implement a

major portion of the Crout method’s computation. After a set of entries within a column of

www.manaraa.com

79

Figure 6.4: The block diagram of our sparse LU Decomposition architecture

the lower triangular part of the matrix have been updated, the Division processing element

normalizes these entries with respect to the matrix’s diagonal element associated with that

column. The Pivot processing element directs movement between Update processing elements

in a manner that results in the pivoting of matrix elements. Additionally, the Pivot processing

element manages the output data stream.

The number of processing elements used for our architecture is configurable based on three

factors 1) amount of on-chip resources, 2) matrix block partitioning strategy used, and 3)

matrix properties (e.g. matrix dimensions, sparsity rate).

6.6.1 Input

The Input PEs have two variations. One is for initially processing columns from the lower

triangular part of the matrix, and one is for processing rows from the upper triangular part of

www.manaraa.com

80

Figure 6.5: Input PE architecture.

the matrix. As shown in Fig. 6.5, the architecture of these two are similar, with the column

version having some additional logic.

The additional logic for column processing serves three purposes: 1) it reduces the amount

of processing by detecting if the update of an element involves multiplication by zero, 2) it

determines if updating the current element will impact updating elements to be processed in

adjacent columns from the upper triangular part of the matrix, and 3) it obtains the pivot

information for each column by locating the element with the largest value.

The functionality that the two variations of the Input PE share is that based on the row

(column) index information received from the input, either 1) the element of the row (column)

read in will be routed to a row (column) Update processing element, or 2) if the element is

to be pivoted from the lower triangular part of the matrix to the upper triangular part of the

matrix or visa-verse, then the element is directed to the Pivot PE, which will be responsible

for forwarding the element to the proper Update PE in the future. Additionally, both Input

PE types take as input matrix row (column) information formatted as CSR (CSC).

www.manaraa.com

81

Figure 6.6: Update PE architecture.

6.6.2 Update

The Update PEs are responsible for helping compute the core update equation of the Crout

method, A(i, j) = A(i, j) − L(i, k) ∗ U(k, j), where k = 1 · · ·min(i, j). It is composed of

two primary components: 1) an Update Compute Engine, and 2) an Update Input Manager.

Fig. 6.6 gives a block-level diagram of the Update PE.

www.manaraa.com

82

The Update Compute Engine performs multiply accumulate operations over rows (columns)

that are currently being updated. It is fed appropriate values from the Update Input Manager.

The Update Input Manager provides two services. Firstly, it manages what we call an “Update

Check Table” to indicate if a given element of a row or table needs to be updated. Secondly,

it maintains a data structure (using Address Pointer Table and Dist Table) that keeps track

of addresses of non-zero values that are stored in Data mem of Fig. 6.6. These are the values

fed to the Update Compute Engine from Data mem.

Once a matrix element has been updated by the Update PE, then if it is associated with

the lower triangular part of the matrix its value is normalized with respect to matrix’s diagonal

element associated with that element’s column.

6.6.3 Pivot

As indicated in Section 6.3.1, pivot operations are required to ensure numerical stability

during sparse LU Decomposition. The Pivot PE (see lower right side of Fig. 6.4) performs

pivots by acting as a router between the lower triangular and upper triangular part of the

matrix. Based on an element’s 〈row, column〉-index information, when read into an Input PE,

the Pivot PE determines if that element should pivot (i.e. be transferred from the lower to

upper triangular part of the matrix or visa-verse). Lookup tables within the Pivot PE are used

to store and evaluate 〈row, column〉-index information to determine if and where an element

should be pivoted. The Pivot PE is also responsible for buffering and sending elements to

off-chip storage that have been completely processed. In other words, an element’s value is

stored off-chip when it can no longer be affected by the processing of future elements.

6.7 Experiments and evaluations

6.7.1 Implementation and experimental setup

Our architecture was evaluated using a Convey Computer HC-2 system [Convey Computer

HC-2 (2012)]. The HC-2 is a hybrid-core system that couples a standard Intel based server

with a co-processor board that hosts four Xilinx Virtex-5 XC5VLX330 FPGAs and a special-

www.manaraa.com

83

ized memory subsystem for high throughput random memory access. We implemented our

architecture for one of the HC-2’s Virtex-5 FPGAs, referred to by Convey as an Application

Engine (AE).

All floating-point operations were performed using double-precision computing cores gener-

ated with Xilinx’s Coregen [Xilinx Inc. (2012)]. The pipeline latency for each type of core used

in our design was: 9, 14, and 57 clock cycles for multiplication, addition, and division, respect-

fully. The modular structure of our design allows us to easily customize the number and types

of PEs implemented to best suit the properties of the matrix being processed. For example,

for a “skinny” and “tall” matrix we implement more Update PEs for processing columns than

rows. The largest design that fits on the Virtex-5 LX330 consisted of 64 Update PEs. The

FPGA resource utilization was 76.4% LUTs, 48.4% DSPs, and 87.5% BRAMs. It could be run

at a maximum frequency of 176 MHz, which easily meets the 150 MHz frequency typically used

for designs run using the HC-2.

Benchmarks were selected from the University of Florida sparse matrix collection [Davis

and Hu (2011)] as workloads for our performance evaluation. As can be seen in Table 6.1,

the selected benchmarks cover a wide range matrix types in terms of Dimension, Element

pattern (e.g. symmetric, asymmetric, rectangular), and Sparsity rate. All matrices were split

into upper triangular and lower triangular matrices and stored using CSR and CSC formats

respectively.

6.7.2 Performance analysis

In this section, we first profile the sequential sparse LU Decomposition implementation on

selected benchmarks. The profiling results (see Fig. 8.10) demonstrate that the percentage of

time consumption for pivoting operations compared to entire execution time is determined by

the matrix property and input data pattern. Comparably, higher percentage of execution time

is used for pivoting operations in sparse LU Decomposition on symmetric matrix compared to

that with asymmetric or rectangular datasets.

To analyze our design, we investigate how different architectural configuration parameters

impact our design’s performance. Then we evaluate the performance of our approach against

www.manaraa.com

84

Table 6.1: Experimental benchmark matrices and their properties.

Matrix Dimensions Sparse rate Pattern Application domain

494 bus 494× 494 0.68% sym Power network
Powersim 15838× 15838 0.03% sym Power network
Msc01050 1050× 1050 2.38% sym Structural problem
problem1 415× 415 1.61% sym FEM
qc2354 2354× 2354 7.22% sym Electromagnetic

West1505 1505× 1505 0.24% asym Chemical process
CAG mat1916 1916× 1916 5.34% asym Combinatorial problem
lpi chemcom 288× 744 0.74% rec Linear programming

Well1850 1850× 712 0.66% rec Least square problem
photogrammetry 1388× 390 2.18% rec Computer vision

an existing FPGA implementation and against several software implementations, including

Matlab (see Table 6.2).

Table 6.2: Experimental benchmark matrices and their performance.

Matrix Dimensions nnz(L+U)
Matlab Our FPGA

performance (ms) performance (ms)

494 bus 494× 494 13,425 1.92 0.359
Powersim 15838× 15838 136,472 19.7 12.3
Msc01050 1050× 1050 61,234 5.89 1.20
problem1 415× 415 12,242 1.33 0.533
qc2354 2354× 2354 926,209 652 107

West1505 1505× 1505 42,688 31.3 13.7
CAG mat1916 1916× 1916 2,542,599 3920 279
lpi chemcom 288× 744 1,878 0.203 0.112

Well1850 1850× 712 122,104 50.2 4.90
photogrammetry 1388× 390 213,891 74.3 6.28

With respect to the impact of parameter settings on performance, we chose to examine

two parameters: 1) the multiply-accumulate blocks size of the Update PE, where block size

refers to the number of columns or rows processed as a batch while a previous column is being

normalized using the division operator, and 2) the number of partitions the input matrix is

www.manaraa.com

85

Figure 6.7: The profiling results of sparse LU Decomposition on selected benchmarks.

divided into. As Fig. 6.8 illustrates, multiply-accumulate block size has a significant impact on

performance. Choosing a block size that is too big or too small causes up to a 2.5× difference

in performance for the representative benchmarks shown. Deeper analysis showed that when

block size was too large, the Update PE spends more time searching the block space for non-

zero values, thus increasing multiply-accumulate stalls. When block size was too small, the

multiply-accumulate engine of the Update PE will finish before the normalization process and

will need to block until normalization completes. An interesting observation is that different

benchmark matrices have different optimal multiply-accumulate block sizes. With respect to

the number of partitions used to split up the input matrix, we observed a much smaller impact.

In Fig. 6.9, the numbers of row pivoting operations are demonstrated by normalizing them to

respective row dimensions of selected benchmarks, in which less row pivoting operations are

required to maintain the numerical stability for symmetrical matrix compared to asymmetric or

rectangular datasets, and a single row are more likely to be pivoted multiple times in operating

rectangular matrix.

Figure 6.10 and 6.11 compares the performance of our architecture against others. When

compared against the FPGA architecture of [Wu et al. (2012)], our throughput is 1.2 to 5×

better. Additionally, while both architectures target acceleration across arbitrary application

www.manaraa.com

86

(a) 494 bus throughput (b) 494 bus Sparcity pattern

(c) West1505 throughput (d) West1505 Sparcity pattern

(e) photogrammetry throughput (f) photogrammetry Sparcity pattern

Figure 6.8: Impact of multiply-accumulate block size and No. of Input matrix partitions on

performance.

www.manaraa.com

87

Figure 6.9: The No. of row pivoting operations compared row dimensions of selected bench-

marks.

domains, our architecture does not require the input matrix to be reordered into a diagonally

dominate matrix. When compared to the software approaches in [Wu et al. (2012)], where

optimized linear solvers UMFPACK [Davis (2004)] and PARDISO [G̊artner (2004)] were used

on a single-core (UMFPACK [Wu et al. (2012)]), single-core (PARDISO [Wu et al. (2012)]),

and 4-core (PARDISO2 [Wu et al. (2012)]) CPU, we show a 1.2 to 75× speedup. A comparison

with Matlab’s LU Decomposition function (Fig. 6.11) run on a 2.2 GHz dual core Intel Xeon

processor with 16GB of memory shows a speedup of 1.6 to 14×.

6.8 Conclusions

An FPGA-based architecture is presented that performs sparse LU Decomposition using

a modified version of the Crout method. As opposed to targeting matrices with domain-

specific sparsity patterns, it efficiently processes input matrices with arbitrary sparsity patterns,

without requiring pre-ordering of the input matrix. For sparse matrix benchmarks having a

wide range of properties, our experimental results show a 1.6 to 14× speedup over an optimized

software solution.

www.manaraa.com

88

Figure 6.10: Throughput comparison between our architecture, and the FPGA and software

implementations in [Wu et al. (2012)].

Figure 6.11: Speedups of our FPGA implementation normalized to Matlab’s LU Decomposition

routine.

www.manaraa.com

89

CHAPTER 7. PARALLELIZING LATENT SEMANTIC INDEXING

USING FPGA

Modified from a conference paper under submission

Xinying Wang1 and Joseph Zambreno2

7.1 Abstract

Latent Semantic Indexing (LSI) has played a significant role in discovering patterns on the

relationships between the query terms and unstructured documents. However, the inherent

characteristics of complex matrix factorization in LSI make it difficult to meet stringent per-

formance requirements, especially when analyze large-scale datasets. In this paper, we present

a deeply pipelined reconfigurable architecture for LSI, which parallelizes the matrix factoriza-

tion and dimensionality reduction, computation of cosine similarity between vectors, and the

ranking of documents. Our architecture implements the reduced Singular Value Decomposition

with Hestenes-Jacobi algorithm, in which both singular values and orthogonal vectors are col-

lected, and its components can be reconfigured to update query vector coordinate and calculate

query-document similarity. In addition, an ordered tree structure is used to reduce the matrix

dimension and rank the documents. Analysis of our design indicates the potential to achieve a

performance of 8.9 GFLOPS with dimension-dependent speedups over an optimized software

implementation that range from 3.8× to 10.1× in terms of computation time.

1Primary researcher and author
2Correspondence author

www.manaraa.com

90

7.2 Introduction

In many scientific and engineering applications (e.g., text processing [Gee (2003)], informa-

tion retrieval [Maletic and Marcus (2000)], and bioinformatics [Vanteru et al. (2008)]), Latent

Semantic Indexing (LSI) has been widely used as an information analysis technique to identify

the relationships between the query terms and the content of unstructured documents. LSI

commonly implements a linear factorization tool named reduced Singular Value Decomposition

(rSVD) [Golub and Van Loan (1996)] at its core, followed by ranking process according to the

cosine similarity between query terms and documents. LSI is considered as computationally

expensive; as the data volume is growing continuously, the performance of sequential LSI im-

plementation can not satisfy the expected efficiency of many applications, which requires the

throughput of semantical retrieval over millions of documents within a few milliseconds per

query [Majumdar et al. (2011)].

Software tools such as Gensim [Řeh̊uřek and Sojka (2011)], SEMILAR [Rus et al. (2013)],

LSAfun [Günther et al. (2014)] have been developed to perform Latent Semantic Analysis

(LSA). However, the efficiency of sequential software implementations is relative low due to the

inherent computational complexity of matrix factorization. To accelerate LSA, GPUs [Byna

et al. (2010)] and multi-processor system with distributed memory [Okša and Vajteršic (2009)]

are used to parallelize matrix factorization and/or vector operations. However, compared to

multi-core or multi-processor systems, FPGAs have shown the promise to provide fine-grained

parallelism [Herbordt et al. (2008)], which is more compatible with highly data-dependent

transformations in SVD.

FPGA-based accelerators have been proposed for LSA [Majumdar et al. (2011); Eick et al.

(2006); Cadambi et al. (2010); Graf et al. (2009)]. However, those implementations reformu-

lated the computationally intensive portion of LSA as matrix or vector operations (e.g., mul-

tiplication, addition), instead of directly parallelizing SVD computation. Although speedups

are achieved, the reconfigurability and flexibility of FPGAs have shown potentials to further

improve the performance by ranking the documents in parallel with pipelined SVD computing

and relative vector coordinates updates.

www.manaraa.com

91

In this paper, we propose an FPGA-based architecture to accelerate LSI, which parallelizes

the SVD computing, vector coordinates updates, cosine similarity calculation, and the process

of ranking selected documents in an order of the calculated query-document cosine similarity.

Our deeply pipelined reconfigurable architecture implements the reduced SVD with Hestenes-

Jacobi algorithm [Wang and Zambreno (2014b)] that collects both the singular values and

orthogonal vectors in the reduced k-dimensional space. Besides, the individual components of

our architecture can be dynamically configured to update the query vector coordinates and

calculate query-document cosine similarity. Additionally, an ordered tree structure is used to

perform dimensionality reduction and rank the documents. Analysis of our design indicates the

potential to achieve a performance of 8.9 GFLOPS with dimensional dependent speedups over

an optimized software implementation that range from 3.8× to 10.1× in terms of computation

time.

7.3 Theoretical background

7.3.1 Latent Semantic Indexing (LSI)

Latent Semantic Indexing [Deerwester et al. (1990)] is a mathematical technique to analyze

the correlation between query terms and a collection of documents. It has been extensively

used in many search engine applications to optimize the information retrieval. Traditionally,

information retrieval is processed through lexically matching query terms with concepts in

documents. However, its accuracy is impaired by synonymy that a given concept can be

expressed in multiple ways, and polysemy that a word is able to convey many different meanings.

To solve this problem, LSI introduces a method to retrieve information through matching the

context of query terms and documents. The documents are ranked by query-document cosine

similarity, which has no direct relationship with the number of shared terms.

To perform LSI, the documents and query terms are modeled by term-document matrix D

and query vector q. D is an m× n matrix and q is a vector with a length of m, where m and

n are the number of selected terms (key words) and documents respectively. An example of

term-document matrix and query vector is given by Fig. 7.1.

www.manaraa.com

92

1. ALU performs arithmetic and logic operations.

2. What operation the ALU to perform is told by the operation code.

3. ALU stands for arithmetic logic unit.

4. ALU is part of a computer processor.

Query terms: ALU, arithmetic, logic, operation(s).

(a) Example documents and query terms

(b) Constructed term-document matrix D and query vector q

Figure 7.1: Example term-document matrix and query vector

www.manaraa.com

93

Figure 7.2: The process of Latent Semantic Indexing

To reduce the dimensions of the semantic space, the reduced Singular Value Decomposition

(rSVD) is performed on the term-document matrix D in the form given by eq. (7.1)

Dm×n ≈ Um×kΣk×kV
T
k×n k < min(m,n) (7.1)

where U and V are orthogonal matrices and Σ is a diagonal matrix with singular val-

ues as its diagonal elements. Matrix V contains n documents coordinates in the reduced

k-dimensional space. After rSVD, query vector q is updated to the new coordinates in the

reduced k-dimensional space in the form of eq. (7.2).

q′ = qTUΣ−1 (7.2)

The query-document cosine similarity between query vector and every document vector in

matrix V in the reduced k-dimensional space is calculated in the form given by eq. (7.3)

sim(q, di) =
q · di
‖q‖ · ‖di‖

(7.3)

where the values of sim(q, di) are used to rank the documents for their association with

query terms. A high cosine similarity indicates the close relationship between query term and

document. However, it does not necessary mean a large number of terms shared by them. A

diagram of general process for LSI is given by Fig. 7.2.

www.manaraa.com

94

Figure 7.3: The 2-3 tree structure and operations

7.3.2 2-3 tree structure

Sorting is necessary as the final step of LSI to rank the documents based on their calculated

cosine similarities with query vectors. Efficient sorting algorithms (e.g. merge sort, quick sort)

or binary search trees (e.g. red-black tree, AVL tree) can be used for this purpose. In our

case, we select 2− 3 search tree algorithm [Cormen et al. (2001)] to sort documents since it is

considered as a balanced search tree that can be easily parallelized [Yang and Prasanna (2010)].

The 2 − 3 tree data structure (see Fig. 7.3) is featured as a balanced and ordered search

tree, whose node either has one element with two children or two elements with three children

attached [Yang and Prasanna (2010)]. It can be seen as an equivalence of a binary search

tree when every node has only one element. When an internal node has two elements p and

q, the elements in its left and right children nodes are smaller and greater than both p and q

respectively, while its middle children node contains the elements with the values between p

and q (p ≤ q).

www.manaraa.com

95

Typical operations on 2 − 3 tree include searching, insertion and deleting. As an ordered

data structure, item can be located in the similar manner as searching in a binary search

tree. Insertions are always taken place at the appropriate leaf nodes, and relative elements

are repetitively moved from children to their parent node until all the 2-3 tree properties are

satisfied. Meanwhile, operations that are required after removing an element depend on the

position of that element in a 2-3 tree. Simple operations are presented in Fig. 7.3.

7.4 Related work

Latent Semantic Analysis (LSA) is a mathematical technique to extract the meaning of

words with the contextual usage, and analyze relationships between documents and terms

[Landauer et al. (1998)]. In the scope of LSA, Latent Semantic Indexing (LSI) [Deerwester

et al. (1990)] is a popular solution for learning and ranking documents with query terms by

modeling them in the semantic space. LSI and its alternatives pLSI [Hofmann (1999)] and LDA

[Blei et al. (2003)] model the concepts of terms in a low dimensional semantic space, and then

identify the correlations between them according to the cosine similarity (LSI) or probability

(pLSI, LDA). In [Bai et al. (2009)], the supervised Semantic Indexing is presented with models

are trained with (query, document) pairs of text documents.

Latent Semantic Analysis (LSA) is computationally expensive, and parallel implementations

have been proposed to accelerate LSA computation. In [Cavanagh et al. (2009)], Cavanagh et

al. presented a GPU-based implementation of LSA, in which they used a Lanczos algorithm to

improve the efficiency of SVD through optimizing a series of matrix-vector operations. Byna

et al. [Byna et al. (2010)] proposed a parallel implementation of supervised Semantic Indexing

with customized best-effort computing strategies [Meng et al. (2009)] and data dependency

relaxation on GPU. Okša et al, in [Okša and Vajteršic (2009)], introduced an LSI implemen-

tation on parallel computer with distributed memory, in which parallel two-sided block-Jacobi

algorithm with dynamic ordering is used. Although GPUs and other modern parallel computer

system have demonstrated the capability to accelerate LSI, FPGAs show potentials in further

performance improvement, especially when the application has relatively sparse datasets.

www.manaraa.com

96

Majumdar et al. proposed an FPGA-based accelerator for supervised Semantic Indexing

[Majumdar et al. (2011)], in which FPGA provides a solution to parallelize a huge amount of

dot products with fine granularity. Eick et al. [Eick et al. (2006)] use FPGA to accelerate

Latent Semantic processing by mapping three compute-bound operations (document vector

tokenization and calculation, documents and concept vectors mapping, and document vector

scoring for ideal match retrieval) onto highly parallel platform. To improve the scalability,

a parallel programmable learning and classification accelerator was presented by Cadambi et

al. [Cadambi et al. (2010)], which uses on-chip memory for intermediate data, and banked

off-chip memory with independent processing elements group assigned. Graf et al. [Graf et al.

(2009)] implemented arrays of variable-resolution arithmetic vector processing elements (VPEs)

on FPGAs to accelerate learning process, in which each group of VPE is connected to inde-

pendent memory bank, and main data flows are kept locally for the purpose of low power

dissipation. Most previous FPGA-based designs for Latent Semantic processing mainly focus

on parallelizing simple matrix or vector computation. However, the flexibility and reconfigura-

bility of FPGAs provide the potentials to parallelize advanced matrix decomposition, vector

coordinates updates, and sorting operation simultaneously.

7.5 Algorithm for Latent Semantic Indexing

The LSI algorithm (see Algo. 4) takes the document-term matrix and query vector as

the input, and output the ranked document sequence in the order of their association with

query terms. To reduce the dimension of the input dataset, reduced SVD is performed on the

document-term matrix with both left and right orthogonal matrices are collected (see Algo. 3).

In our proposed LSI solution, the Hestenes-Jacobi algorithm is employed since it is featured with

highly parallelizable vectored “reduce” and “map” operations [Wang and Zambreno (2014b)].

Hestenes-Jacobi algorithm is introduced based on the principle that annihilates individual

element is equal to orthogonalize their respective column vectors. Thus, to conduct column-

wise orthogonalization, squared column vector norms Ni,i and the covariances among columns

Ni,j are first calculated, which is followed by iterative Jacobi rotations to zero out covariances.

In this process, the calculated Jacobi rotation parameters are used to update affected squared

www.manaraa.com

97

Input: matrix A and its dimensions m and n, matrix V

Output: Singular value vector Σi, orthogonal matrices U and V

/* Calculate the squared 2-norms and covariances */

for i← 1 to n do

for j ← i to n do

Ni,j ← ATi ∗Aj
end

end

repeat

for i← 1 to n− 1 do

for j ← i to n do

/* Calculate Jacobi rotation angle parameters */

norm1 ← Nj,j norm2 ← Ni,i cov ← Ni,j

ρ← (norm2 − norm1)/(2 ∗ cov) t← sign(ρ)/(|ρ|+
√

1 + ρ2)

cos← 1/
√

1 + t2 sin← cos ∗ t
/* Update the squared 2-norms */

Nj,j ← Nj,j + t ∗ cov Ni,i ← Ni,i − t ∗ cov
/* Update the covariances */

for h← 1 to i− 1 do

Nh,i ← Nh,i ∗ cos−Nh,j ∗ sin Nh,j ← Nh,i ∗ sin +Nh,j ∗ cos

end

for h← i+ 1 to j − 1 do

Ni,h ← Ni,h ∗ cos−Nh,j ∗ sin Nh,j ← Ni,h ∗ sin +Nh,j ∗ cos

end

for h← j + 1 to m do

Ni,h ← Ni,h ∗ cos−Nj,h ∗ sin Nj,h ← Ni,h ∗ sin +Nj,h ∗ cos

end

/* Update the left orthogonal matrix */

(A1:m,i A1:m,j) = (A1:m,i A1:m,j)

[
cos sin
− sin cos

]
/* Update the right orthogonal matrix */

(V1:n,i V1:n,j) = (V1:n,i V1:n,j)

[
cos sin
− sin cos

]
end

end

until convergence reached

for i← 1 to min(m,n) do

Σi ← Ai,i
end

Algorithm 3: Modified Hestenes-Jacobi SVD algorithm with orthogonal ma-
trices collected

www.manaraa.com

98

vector norms Ni,i, covariances Ni,j , and the related entries of the input matrix A and the right

orthogonal matrix V . By running numerous iterations, the convergence can be acheived as

the absolute value of covariance is smaller than the product of their respective column vector

norms. Then, singular values can be collected as the squared root of those squared column

norms. Left orthogonal matrix can be obtained with the updated input matrix A and singular

values Sig as U = A∗Sig−1, while the resulted matrix V is the wanted right orthogonal matrix.

Input: Term-document matrix D and query vector q

Output: Ranked document sequence Rd

[m n]← size(D)

/* Perform SVD on matrix D ([U Σ V]←svd(D)) (see Algo. 3) */

A← D V ← I

[A Σ V]←svd(A)

/* Reduce to low rank k-SVD and update the query vector q */

q′ ← qAΣ−1

/* Calculate cosine similarity among query and document vectors */

for i← 1 to n do
simi = q·vi

‖q‖·‖vi‖
end

/* Sort the resulted similarity sequence */

Rd← sort(sim)
Algorithm 4: Latent Semantic Indexing Algorithm

First k column and row vectors with largest associate singular values are selected from

the left and right orthogonal matrices respectively. Then, query vector is updated with the

dimensionality reduced left orthogonal matrix and singular values. As both the computation

of left orthogonal matrix U and update of query vector q requires the inverse of square root

operations, they can be eliminated by a single division. Cosine similarity between document

vectors from the right orthogonal matrix and updated query vector q′ are computed with the

vector norms and covariances. The final resulted ranked sequence is generated by the sorting

operation with calculated similarity, and in our design, we use a 2− 3 tree structure [Cormen

et al. (2001)] to perform sortings.

In this algorithm, all the vectored computations can be parallelized, and they are shared

either “reduce” structure to obtain the product of vectors for norms and covariances or “map”

structure to update vector elements. Meanwhile, the 2−3 tree structure [Cormen et al. (2001)]

www.manaraa.com

99

Figure 7.4: The proposed architecture for Latent Semantic Indexing.

offers a great opportunity to parallelize the sorting operation, which can be conducted simul-

taneously with other calculations if there is no data dependencies among them.

7.6 Proposed architecture for Latent Semantic Indexing

LSI primarily consists of four computational or logic operations: (1), calculating the squared

norms of vectors and the covariances between vector pairs for the SVD and cosine similarity

computation; (2), conducting Jacobi rotations on paired squared norms and their respective

covariances; (3), updating the matrix elements, the newly generated right orthogonal matrix

elements, and the covariances affected by rotation; (4), sorting the singular values for dimen-

sionality reduction and the calculated cosine similarity for the final output.

www.manaraa.com

100

In our architecture for LSI (see Fig. 7.5), we created four fully pipelined components: the

Vector reduction component, the Jacobi rotation component, the Update component, and the 2-3

tree sorting component, in which the Vector reduction component and the Update component

reuse the same computational resources. The Vector reduction component is responsible for

computing the squared vector norms and the associate covariances of SVD and cosine similarity

computing. The Jacobi rotation component is used to perform plane rotation with squared

vector norms to annihilate their related vector covariance. The update component is employed

to update the affected elements including the input matrix elements, created right orthogonal

matrix elements, and the vector covariances. The final result of this architecture is produced

by the 2−3 tree sorting component, which sorts the document vectors according to their cosine

similarity with query vector.

7.6.1 Vector reduction component

The Vector reduction component extends the Hestenes Preprocessor of [Wang and Zam-

breno (2014b)]’s architecture to compute vector dot products for the norms and covariances

computing, the query vector coordinates updates, and cosine similarity calculation. In the

process of LSI, both the SVD computing and vector cosine similarity computation require the

squared vector norms and covariances among vectors. Thus, the Vector reduction component

compute squared column 2-norms and covariance between column vectors through ATi ∗ Aj

with a design of multiple layers of pipelined multiplier-arrays (shown in Fig. 7.5). In this de-

sign, a multiplier-array is responsible to calculate the partial results of different squared norms

and their related covariances, and operands are reused by all the multipliers in a pipelined

manner. The “reduce” process is performed through summing up the calculated product of a

multiplier with the results of its corresponding multiplications across all the layers, who share

the same matrix column indexes. For instance, as shown in Fig. 7.5, the matrix elements

of Ai,j+1, Ai+1,j+1, Ai+2,j+1, and Ai+3,j+1 are multiplied with Ai,j+2, Ai+1,j+2, Ai+2,j+2, and

Ai+3,j+2 at first, second, third, and forth layer respectively, and their results are summed up

as partial result of the covariance between the (j + 1)th and (j + 2)th columns. At the mean

time, operands as Ai,j+1 are successively applied to the adjacent multipliers for multiplications

www.manaraa.com

101

Figure 7.5: The architecture of Vector reduction component.

such as Ai,j+1*Ai,j+3, whose product is used to compute the covariance between (j + 1)th and

(j + 3)th columns.

7.6.2 Jacobi rotation component

t =
|2 ∗ ci,j |

|nj − ni|+
√

(nj − ni)2 + 4 ∗ c2
i,j

(7.4)

cos =

√√√√√(nj − ni)2 + 2 ∗ c2
i,j + |nj − ni| ∗

√
(nj − ni)2 + 4 ∗ c2

i,j

(nj − ni)2 + 4 ∗ c2
i,j + |nj − ni| ∗

√
(nj − ni)2 + 4 ∗ c2

i,j

(7.5)

sin = (sign)

√√√√ 2 ∗ c2
i,j

(nj − ni)2 + 4 ∗ c2
i,j + |nj − ni| ∗

√
(nj − ni)2 + 4 ∗ c2

i,j

(7.6)

www.manaraa.com

102

Figure 7.6: The architecture of Update component.

Similar with the Jacobi rotation component of [Wang and Zambreno (2014b)]’s architecture,

this Jacobi rotation component is mainly responsible for performing orthogonal transformation

between column vectors. As described in Algo. 3, the orthogonalization between column vec-

tors is calculated through a series of operations on paired squared column 2-norms and the

associate covariance. By expanding the Jacobi rotation process, its equations can be repre-

sented as eq. (7.4), eq. (7.5), eq. (7.6), where ni and nj represents the squared 2-norms of

column vectors, while the covariance between columns is represented by covi,j . The calcu-

lated parameter t is an update factor that is used to update its corresponding vector 2-norms,

and annihilate covariance between the rotated vectors. As floating-point arithmetic has be-

come increasingly popular in many scientific and engineering applications for its wider value

range support, in our architecture, we use floating-point operators to perform the additions,

subtractions, multiplications, divisions, and square-root operations, and all of which can be

performed concurrently if independent operands are applied. Although fully parallelize all the

independent operations can achieve high throughput, the floating-point computational cores

are featured with expensive cost of resources. To balance the efficiency both in speed and

resources usage, the floating-point computational cores are reused among those calculations.

Besides, the divider is also reused in later computations for query vector coordinates updates

and vector cosine similarity computation.

www.manaraa.com

103

7.6.3 Update component

The Update component performs element-wise update on matrix column entries and covari-

ances which are affected by the processed Jacobi rotations in the SVD computing. Generated

rotation angle parameters cos and sin are employed to update the matrix column covariances

before they are used by later rotations, and calculate matrix column entries of both left and

right orthogonal matrices. The updates of original matrix entries affected by rotations itera-

tively resulted in the left orthogonal matrix, while the iterative collection update of generated

rotation angle parameters create the right orthogonal matrix, both of which consists of simple

multiplications, additions and subtractions. The architecture of a update component is demon-

strated in Fig. 7.6, in which pipelined multipliers and adder are employed. In our architecture,

multiple update components are equipped to perform the all the update operations, whose ef-

ficiency dominates the system performance for large-scale matrices, and the number of Update

component that can be allocated on a single chip is determined by the availability of on-chip

resources. To optimize the hardware resource usage, the multiplier-arrays and their connected

adders of computational operators of Vector reduction component are reused as the a series of

Update components through runtime reconfiguration.

7.6.4 2-3 tree sorting component

The 2−3 tree sorting component is responsible for producing the results of the LSI process

by ranking the documents according to their cosine similarity with the query vector. The 2− 3

tree is a sorted tree data structure, whose node has either one or two data elements, and each

node has either at most two or three children nodes. The example of 2 − 3 tree structure is

shown in Fig. 7.3, in which a node has at most two elements (v1 and v2) and up to three

children with element values as l (left children), c (center children), and r (right children) in an

order of l ≤ v1 ≤ c ≤ v2 ≤ r. In our architecture, the calculated the series of cosine similarity

values are streamed into the 2− 3 tree sorting component, and they are continuously inserted

into the appropriate position of the sorted tree.

www.manaraa.com

104

The 2−3 tree sorting component organizes BRAMs into unit to store tree node information,

and uses a group of BRAM units to maintain a full tree structure. The description of the

BRAMs usage is introduced in Table 7.1, in which the BRAM DataMem is used to store

the floating-point numerics, and each entry of which has corresponding entries in BRAMs

LeftNode, MidNode, RightNode, and ParentNode to store the address pointers to its parent,

left child, center child, and right child entries. Meanwhile, the BRAM SortedLink keeps the

address pointers of the last and next elements in the sorted order, whose access produces the

final sorted result. To help the tree search and insertion operation, BRAM LevelandNeighbor

and StatusRegisters are implemented, in which BRAM LevelandNeighbor is used to manage

the tree node level number and the address pointer of the other data element in the same tree

node, while StatusRgisters keeps current tree structural parameters. Besides, PathRegisters

are functioned as flags to indicate on which path the data movement is stalled due to this path

is affected by a tree structure update. Additionally, FIFOs are used to synchronize the data

movement among BRAMs.

The 2 − 3 tree is a self-balanced search tree data structure, and in our architecture, the

operations are performed on the 2 − 3 tree mainly includes searching, insertion, update and

deletion. When a new data element arrives, the process starts with searching the proper position

for insertion based on its key value. The search function starts with examining the root node,

and then be directed to the proper subtree based on its key value. By recursively performing

comparisons from the root node to the leaf node level by level, the search process for insertion

is ended when leaf node is reached, and the insertion operation normally takes place at the

leaf level. If only one element exist in a leaf node, the new data element can be directly added

into this node, otherwise update operation is started due to the maximum capacity of a single

node is violated with new element inserted. The update operation splits a tree node into two

tree node, and move the elements with middle key up to the parent node. Update operation is

performed upwards recursively if parent tree node capacity is exceeded, and new root node is

generated if the old root node has more than two data elements. Similar with data insertion,

to delete a node, the iterative updates from child node to parent node are performed with data

move down until the 2− 3 tree property is satisfied.

www.manaraa.com

105

Table 7.1: Local memory design for the management of 2-3 tree structure.

BRAM or Entry Field Description
Register(s)

Data Mem Data value store the data
values continuously

Left Node Addr1 Addresses of two elements
Addr2 in its left children node

Mid Node Addr1 Addresses of two elements
Addr2 in its mid children node

Right Node Addr1 Addresses of two elements
Addr2 in its right children node

Parent Node Addr1 Addresses of two elements
Addr2 in its parent node

Sorted Link Next Addresses of two elements which are
Last right before and after in sorted order

Level and Level Its level index
Neighbor Neighbor Address of its neighbor

element within a node

Group ID Connected Memory group indexes of all
Nodes connected nodes or elements

Status Registers Status Addresses of root elements
The number of tree levels

Path Registers Paths Path Status indicate if any
any update in its moving path

FIFOs value Buffers to move and synchronize
related info data and corresponding info

To parallelize the 2 − 3 tree operations, numerous search process can be executed concur-

rently, and the key value comparisons at different level can be performed in parallel. As search

the tree does not alter its structure, the parallelism of the search operation is straightforward.

When proper tree node is located, the new element is added or an old element is deleted, and

the tree structure is needed to be updated when tree property is violated. In most cases, the

search, insertion, deletion and update operations can be simultaneously performed, since, in

this component, we maintain the tree structure and update the tree nodes connections locally

with out affecting the operations on the rest part of the tree.

An example 2-3 tree operation process is demonstrated in Fig. 7.7, in which independent

comparisons are performed concurrently at different level except the stall happens at the second

www.manaraa.com

106

Figure 7.7: The example of parallel processing with new elements insertions and 2-3 tree

structure updates.

level tree node when 10 arrives due to its right children leaf node starts an update to recover

the tree property violation at this cycle. Each tree node can perform the comparisons with up

to 4 elements include one element move up from lower level as the result update operation, and

one element move down for locating proper tree node. When an update take place, the data

element stall will be placed at every level of tree node in the path to the root, and no operation

will be performed at these tree nodes at this cycle. The example result of the 2− 3 tree with

all data elements inserted is demonstrated in Fig. 7.8, in which dashed line represents the

partition of the 2− 3 tree into numerous groups of the BRAM units, which can be operated in

parallel. Input element starts operations with the BRAM unit who has the root tree node, and

communications of data elements and their associated parameters take place among BRAM

units as needed.

www.manaraa.com

107

Figure 7.8: The resulted 2-3 tree with all data inserted.

7.7 Implementation and Experimental Evaluation

7.7.1 Implementation and experimental setup

To evaluate the performance of our Latent Sematic Indexing design, we implement our ar-

chitecture on a single Xilinx Virtex-5 XC5VLX330 FPGA on the Convey HC-2 system [Convey

Computer HC-2 (2012)]. In our implementation, we generate the double-precision floating-point

computational cores by using Xilinx Coregen generator [Xilinx Inc. (2012)]. In the Vector re-

duction component, eight layers of multiplier-array are implemented, in which 32 multipliers

and 32 adders are used. Dynamic reconfiguration is performed on the Vector reduction com-

ponent to the Update components with 32 multipliers and 16 adders at the first level. In the

Jacobi rotation component, 1 multiplier, 2 adder, 1 divider and 1 square-root operator are

employed, which initializes 8 independent Jacobi rotations in pipeline in every 64 clock cycles.

In our system, our generated computational cores are configured with default latencies as 9,

14, 57, 57 clock cycles for multiplier, adder, divider and square-root calculator respectively.

To synchronize the input and output, two groups of eight 64-bit width FIFOs are used, and

another group of FIFOs are employed for the data communication between the Vector reduc-

tion component, the Jacobi rotation component, and the Update components. To temporarily

cache the rotation angle parameters and covariances, simple dual port RAMs are used. Four

groups of eight simple dual port RAMs are employed for the 2− 3 tree sorting component, in

which Data Mem is configured with 64 bit entries, while 16 bit bandwidth is used for other

www.manaraa.com

108

Figure 7.9: The percentage of time consumption for SVD computing in the entire LSI execution

(k is 64).

Figure 7.10: The percentage of time consumption for SVD computing in the entire LSI execution

(k is 128).

www.manaraa.com

109

local pointer storages. The system is evaluated by executing at 150 Mhz, in which the SVD

computing is an iterative process, and each element is rotated by 6 times, which is believed

sufficient for achieving reasonable convergence.

7.7.2 Performance analysis

By profiling the sequential LSI implementation, the SVD computing normally takes more

than 90% of LSI execution time (see Fig. 7.9 and Fig. 7.10). In both Fig. 7.9 and Fig.

7.10, the experiment results demonstrate higher percentage of execution time is consumed by

SVD computing in LSI operation as matrix dimensions grow. Although, the value of reduced

subspace dimension k has comparably trivial impact on the profiling results, the percentage of

SVD computing in LSI operation slightly increases as the subspace dimension k grow.

Our experiment are applied with both square and rectangular matrices with different di-

mensions of reduced k-subspace, the performance for matrices with dimensions from 256 to

1024 is demonstrated in Fig. 7.11, in which the dimension of the subspace is set at 128. The

experimental results demonstrate that the execution time grows significantly as the number of

documents increases, due to the amount of updates for the right orthogonal matrices, and ma-

trix vector covariances is determined by the quantity of documents. Comparably, the number

of key words, who determines the dimensions of the left orthogonal matrix, has smaller impact

on the overall performance. However, the LSI process requires the usage of both left and right

orthogonal matrices, and the matrices elements updates after each rotation usually dominates

the performance of the SVD computing for medium to large sized matrices. In our design, we

can temporarily store matrices with dimensions under 128, and when the matrix size grows over

128, the performance is increasingly affected by the I/O bandwidth for the matrix elements

and covariances communicating between our LSI architecture and the off-chip memory.

In Fig. 7.12, the performance of LSI computation on different dimensional matrices with

different subspace dimensions is demonstrated. In the LSI process, the dimensionality reduc-

tion is performed after the SVD computing based on the calculated singular values. In this

experiment, we have the observation that the number of k has comparably trivial impact on

the overall performance of the LSI process, due to the overall the performance of LSI is heavily

www.manaraa.com

110

Figure 7.11: LSI computation time (in seconds) for matrices with different dimensions (k is

128).

Figure 7.12: LSI computation time (in seconds) for different dimensional matrices with different

k-subspace.

www.manaraa.com

111

determined by the SVD computation. For rectangular matrix, as the dimension of subspace

grows, the number of key words is a more significant factor that affect the performance of the

LSI process, compared to the number of documents.

When the input dataset has a column dimension over 256, the I/O bandwidth starts affecting

the speed of LSI execution. Due to the on-chip storage resources are limited, and the amount

of communications between the LSI engine and off-chip memory increases as the dimension of

input dataset grows. Fig. 7.13 demonstrates the average number of double-precision floating-

point I/O requests per clock cycle for input matrix with various column dimensions. The I/O

bandwidth becomes a significant factor to affect the efficiency of our design as the number of

double precision floating point operands communication requests per clock cycle grows over 16,

which number is the optimized I/O bandwidth that is provided by our experimental platform.

Comparisons of execution times have been made between our implementation and Matlab

LSI program, and in Fig. 7.14, the dimensional speedups of our design compared to the Matlab

7.10.0 LSI program running on a 2.2 GHz dual core Intel Xeon processor are demonstrated, in

which Matlab program uses the SVD and sorting routines. By analyzing those data points in

Fig. 7.14, our architecture shows better efficiency than Matlab implementations, with a dimen-

sional speedups that can be achieved range from 3.8× to 10.1× for matrices with dimensions

from 256 to 2048. As the our experimental platform’s on-chip memory is limited, and I/O

throughput has increasingly significant impact on the performance as matrix dimension grows.

The speedup decrease as the I/O requests start to affect the overall performance, and the

speedups then gradually increase after the dimensions have further growth due to the efficiency

of pipelined computational cores usage is improved.

We have also compared the performance of SVD computing in our design with the published

results of SVD solutions implemented with Intel MLK 10.0.4 or on NVIDIA 8800 GPU with

128 stream processors [Lahabar and Narayanan (2009)]. Although MKL-based and GPU-based

solution have demonstrated better efficiency when matrix size grows over thousands, our design

is more efficient for processing matrices with dimension up to 2k. In our design, we are able to

achieve 8.9 GFLOPs with 78% slice LUT, 89% BRAM, and 67% DSP used.

www.manaraa.com

112

Figure 7.13: The average No. of double precision floating point operands communication

requests per clock cycle for input matrix with various column dimensions (k is 128).

Figure 7.14: Speedups of our LSI process compare to Matlab LSI program execution.

www.manaraa.com

113

7.8 Conclusion

An FPGA-based hardware architecture is proposed and implemented to perform Latent

Semantic Indexing, which parallelizes the Hestenes-Jacobi SVD computation, the vector com-

puting, the calculation of cosine similarity, and the sorting of the resulted vector. The perfor-

mance analysis indicates our design has better performance than standard software solutions,

and better efficiency for matrices with small to medium dimensions compared to GPU and

MKL implementations. Further optimization are planned to merge the dimensionality reduc-

tion process within the SVD iterative process as the future work.

www.manaraa.com

114

CHAPTER 8. A CONFIGURABLE ARCHITECTURE TO

ACCELERATE HOMOTOPY `1-MINIMIZATION

Modified from a Journal paper under submission

Xinying Wang1 and Joseph Zambreno2

8.1 Abstract

`1-norm minimization has played a vital role in many scientific and engineering applications

to solve the underdetermined system of equations, especially in compressed sensing, which area

acquires and accurately reconstructs signals with significantly reduced dimensions. However,

`1-norm minimization is considered computationally complicated. Although a few approxi-

mate algorithms were proposed to improve the performance of `1-norm minimization in speed,

their accuracy are limited. To balance the speed and accuracy, hardware accelerators (GPUs,

FPGAs) are used to explore parallel solutions to accelerate exact methods of `1-norm minimiza-

tion. However, the existing implementations are either parallelizing slow algorithms or limiting

the parallelism in simple matrix-vector computations. Homotopy algorithm is the fastest exact

method for `1-norm minimization, which constructs a decreasing sequence of regularization pa-

rameter, and “break points” are identified along the path with the variable associated support

set updated by adding or removing components. The classical Homotopy algorithm performs

rank-1 update every time when a single element entering or leaving the support set. However,

it requires executing a large number of iterations to reach the convergence. In this paper,

we modify the Homotopy algorithm to allow only a single update of the search direction of

Homotopy path to be performed after a few qualified elements added to the support set by

1Primary researcher and author
2Correspondence author

www.manaraa.com

115

performing Cholesky Decomposition, which reduces the number of iterations for convergence.

To accelerate Homotopy `1-norm minimization, we propose an FPGA-based highly pipelined

architecture, which can be dynamically configured to perform either Cholesky Decomposition

or rank-1 update. By evaluating our architecture with randomly generated dataset and bench-

mark from the application of robust face recognition, our experimental result demonstrate

dimensional and application-dependent speedups from 3.6× to 9.9× compared to optimized

software solution with reasonable accuracy achieved.

8.2 Introduction

The pursuit of the minimum `1-norm solution has been considered as an effective way

to solve the underdetermined system of linear equations, which has fewer linear equations

than the number of unknown variables [Chen et al. (2001)]. To recover the unknown vector

x0 ∈ Rn from a linear transformation y = Ax0 with the known resulted vector y ∈ Rm and

matrix A ∈ Rm×n(m < n), `1-norm minimization are normally transformed into a convex

optimization problem as basis pursuit denoising (BPDN) [Chen et al. (2001)]. Solving the `1-

norm minimization problem or BPDN is considered as a time consuming process, and classical

approaches such as primal-dual interior-point methods are challenged by high time complexity

[Kojima et al. (1990)]. In the past a few years, several methods have been proposed to improve

the performance of `1-norm minimization. However, the state-of-the-art are still suffered from

performance issues in terms of speed and accuracy for exact and approximate approaches

respectively [Yang et al. (2010)].

Solutions for `1-norm minimization have been categorized into two groups that exact meth-

ods and approximate methods. Among the cutting-edge `1-norm minimization solutions, Gra-

dient Projection [Figueiredo et al. (2007)] and Homotopy [Malioutov et al. (2005)] are the most

representative exact methods, while Soft Shrinkage-thresholding [Wright et al. (2009)], Prox-

imal Gradient [Becker et al. (2011)], and Alternating Direction [Yang and Zhang (2011)] are

the widely used approximate methods. Although approximate `1-min solutions demonstrate

an improvement of the efficiency compared to exact methods, their achievement of accuracy

is limited. An investigation on the performance of latest `1-norm minimization solvers for

www.manaraa.com

116

the application of robust face recognition demonstrates that exact methods generally outper-

form their approximate alternatives in terms of recognition accuracy especially when the pixel

corruption rate grows [Yang et al. (2010)]. Among the exact methods, Homotopy algorithm

has demonstrated the capability to achieve the best performance both in speed and accuracy.

However, it is running one order of magnitude slower than approximate solutions [Yang et al.

(2010)].

The Homotopy algorithm solves the objective function of BPDN by decreasing a regular-

ization parameter to follow a Homotopy path from the `2 constraint to the `1 objective in a

piece-wise manner [Donoho and Tsaig (2008); Efron et al. (2004)]. The Homotopy algorithm

constructs a decreasing sequence of regularization parameter, and identifies “break points”

along the path with the variable associated support set updated by adding or removing com-

ponents [Yang et al. (2010)]. In this process, the performance is dominated by determining

the direction of the path at every “break point” through the subdifferentiation of the convex

function, which is normally calculated by conducting matrix decomposition, matrix inverse or

rank-1 update [Yang et al. (2010)](such as QR [Wang et al. (2014)] or symmetric LU Decompo-

sition [Wang et al. (2014)]). Fortunately, the matrix decomposition, matrix inverse or rank-1

update can be easily parallelized, which provides the opportunities to accelerate the Homotopy

`1-norm minimization.

Many research has been conducted to explore novel algorithms for optimizing both the

speed and accuracy of `1-norm minimization [Figueiredo et al. (2007); Malioutov et al. (2005);

Wright et al. (2009); Becker et al. (2011); Yang and Zhang (2011)]. However, the improvement

of the performance is still limited due to the inherent high computational complexity especially

for exact methods [Yang et al. (2010)]. Parallel implementations were proposed for `1-norm

minimization by using hardware accelerators such as GPU [Shia et al. (2011); Fang et al. (2011)]

and FPGA [Blache et al. (2012); Bai et al. (2012); Rabah et al. (2015); Ang and Kumar (2013)].

However, most of them were designed to accelerate the BPDN with Orthogonal Matching

Pursuit (OMP) [Pati et al. (1993)], a traditional `1-min solver who is considered with poor

recovery accuracy, questionable scalability, and conditional failures [Ang and Kumar (2013);

Plumbley (2006)]. Although several GPU [Shia et al. (2011)] or FPGA-based [Ang and Kumar

www.manaraa.com

117

(2013)] designs were implemented to optimize advanced solvers, their parallelism are limited

to simple matrix-vector computations, which leaves additional space for further performance

improvement.

Homotopy algorithm is an iterative process to achieve the convergence through tracing the

Homotopy path. In this paper, we modify the Homotopy algorithm to allow multiple elements

to be added to the support set together followed by a single direction update, which can

significantly reduce the number of iterations required for convergence. We propose an FPGA

implementation for `1-norm minimization with Homotopy algorithm, which can be dynamically

configured to perform either parallel Cholesky Decomposition or rank-1 update. By analyzing

the performance of our proposed hardware solution, our architecture shows dimensional and

application-dependent speedups from 3.6× to 9.9× compared to optimized software solution

with reasonable accuracy achieved.

8.3 Theoretical background

8.3.1 `1-norm minimization problem

`1-norm minimization has been considered as an effective factorization tool to solve the

underdetermined system of equations, especially in the applications of compressive sensing.

Given a measurement vector b ∈ Rn and a known matrix A ∈ Rp×n, an equation of b = Ax can

be built with an unknown vector of interest x0 ∈ Rn (p < n). Thus, the equation can be solved

through minimizing `1-norm with formula (8.1), a computational tractable linear program.

minimize
x

‖x‖1 subject to b = Ax (8.1)

In this underdetermined system, n and p represent the number of variables and equations

of this linear system, and they can be used to determine the sparsity of the solution x0. In the

sense of Compressive Sensing, x0 can be exactly recovered or reasonably approximated when

the unknown vector x0 is sufficient sparse and matrix A has incoherent columns [Bruckstein

et al. (2009)].

www.manaraa.com

118

To solve `1-norm minimization, the white noise are normally taken into account to relax

the equation b = Ax. By adding the error measurement n, the equality turns into b = Ax+ n

(‖n‖2 ≤ ε), which approximation is named as basis pursuit denoising (BPDN) (see (8.2)) [Chen

et al. (2001)].

minimize
x

‖x‖1 subject to ‖b−Ax‖2 ≤ ε (8.2)

By solving this regularization problem, optimal solution for `1-norm minimization can be

pursued through the process of balancing the trade-off between minimizing the `2 distance of the

residual (y−Ax) and simplifying the `1-norm of unknown vector x. In the past decades, `1-norm

minimization problem had attracted broad attention in the community of signal processing, and

many general solvers were proposed such as interior points method [Yang et al. (2010)], Gra-

dient Projection (GP) [Figueiredo et al. (2007)], Homotopy [Malioutov et al. (2005)], Iterative

Shrinkage-Thresholding (IST) [Wright et al. (2009)], Proximal Gradient (PG) [Becker et al.

(2011)], and Augmented Lagrange Multiplier (ALM) [Yang and Zhang (2011)]. Among them,

Homotopy `1-norm minimization method is recognized as one of the most efficient approach to

produce the exact solution of the `1-norm minimization problem.

8.3.2 Homotopy method for `1-norm minimization

To perform `1-norm minimization, the optimization problem (8.2) is normally transformed

into a more convenient and unconstrained form as shown in (8.3) [Donoho and Tsaig (2008)].

minimize
x

λ‖x‖1 +
1

2
‖b−Ax‖2 (8.3)

The Homotopy `1-norm minimization method normally initializes the solution x as 0, and

λ is set as infinity. Then, λ decreases gradually in a piecewise linear manner, and changes

are computed accordingly. In this process, the solution x are built successively by adding or

removing components to or from its active set. The algorithm is terminated when the constraint

is reached that ‖b − Ax‖2 = ε. In many cases, the use of a pre-calculated initial solution can

www.manaraa.com

119

shorten the path to achieve the optimal solution with Homotopy `1-min algorithm, and the

sparsity rate of the solution determines the number of steps in this path to reach the solution.

While the entire path of Homotopy `1-min algorithm maintains the optimality of (8.3), the

relationship (8.4) can be derived from the Karush-Kuhn-Tuchker (KKT) optimality conditions

[Kuhn and Tucker (1951)] by subdifferentiating the objective function of (8.3).

∂fλ(x)

∂x
= −AT (b−Ax) + λu = 0 (8.4)

where u is the subdifferential of ‖x‖1, and its values are defined as the set of (8.5) [Dai

et al. (2015)].

 ui = sgn(xi), xi 6= 0

ui ∈ [−1, 1], xi = 0
(8.5)

Therefore, the eq. (8.4) can be rewritten as eq. (8.6).

 |A
T
Σ(b−Ax)| ≤ λ

ATΦ(b−Ax) = λ · sgn(xΦ)
(8.6)

where Σ and Φ represent the sparse support sets, whose elements are the column indexes

of matrix A. By satisfying eq. (8.6), the optimality condition of eq. (8.3) can be guaranteed.

By further taking the derivative on both sides of eq. (8.6) with λ, the Homotopy path search

direction can be obtained as that x′i = 0 when i ∈ Σ, and x′i = −(ATΦAΦ)−1sgn(xΦ) when

i ∈ Φ, with the assumption that limited change is applied to λ, and the matrix ATΦAΦ is of

full rank [Dai et al. (2015)]. The Homotopy algorithm is designed to fit its entire path solution

to eq. (8.3) for every small change of the regularization parameter λ in a piecewise manner.

Thus, the regularization parameter λ and variable x can be updated as λd+1 = λd + ∆λ and

xd+1 = xd + ∆λx′, where d indicates the sparse support after d times of updates along the

homotopy path.

The updates of regularization parameter λ and variable x may lead to either adding or

dropping event occur that either add element into or drop event from active support set.

When the scenario happens that ATi (b−A(x(d) + ∆x′)) = ±(λd + ∆λ), where i ∈ Σ, an index

www.manaraa.com

120

i ∈ Σ(d) will be added to the active support set Φ(d), and the index i is determined by the eq.

(8.7) [Dai et al. (2015)].

γ+ = min
∀i/∈Φ

{ATi (b−Ax(d))− λ(d)

ATi Ax
′ + 1

,
ATi (b−Ax(d)) + λ(d)

ATi Ax
′ − 1

}
(8.7)

Meanwhile, another scenario may happen that an index i ∈ Φ with its value crosses zero,

which violates the sign agreement. When this scenario occurs, the index i will be removed from

active set Φ, and the index i can be obtained through eq. (8.8).

γ− = min
∀i∈Φ

{
− x(d)

i /x′i
}

(8.8)

In constructing the Homotopy path with decreasing regularization parameter λ, “break

points” are identified at the occurrence of either adding element into active set or dropping ele-

ment from active set, and the operation at each “break points” is determined by min
{
γ+, γ−

}
.

The Homotopy path maintains the optimality conditions of eq. (8.3) at each “break points”,

and variable x converges to the solution of eq. (8.3) as the regularization parameter λ ap-

proaches zero [Yang et al. (2010)].

8.4 Related work

`1-norm minimization has been widely used in compressed sensing as an efficient approach

to recover the sparse estimate of compressed dataset [Chen et al. (2001)]. However, it is

identified as a computationally expensive operation. In the past a few years, new algorithms

were proposed to improve the performance of `1-norm minimization both in speed and accuracy.

Primal-Dual Interior-Point Algorithm (PDIPA) is considered as a classical solution for solving

`1-norm minimization as a linear programming problem. However, a total of O(
√
n) iterations

and O(n3) operations in each iteration are required to solve this linear system [Yang et al.

(2010)].

Figueiredo and etc. introduced Gradient Projetion (GP) algorithm, which reformulated the

linear programming implementation in PDIPA as a bounded quadratic programming problem

[Figueiredo et al. (2007)]. By selecting appropriate search parameter, significant improvement of

www.manaraa.com

121

performance is achieved as better convergence speed is demonstrated [Figueiredo et al. (2007)].

But, when the problems are of large scales, approximate solution should be used as it is compu-

tationally impractical for solving GP directly. To further improve the performance, Malioutov

and etc. discovered the fact that the objective function of the Quadratical Programming fol-

lows a homotopy path from the `2 constraint to the `1 objective, while their regularization

parameter decreases. Based on this fact, Homotopy method was proposed to solve `1 norm

minimization with a more efficient and greedy optimization path selected compared to previous

two, and its performance is dominated by updating direction in O(n2) operations [Malioutov

et al. (2005)]. However, in case of its sparsity grows proportionally with the dimension, the

upper-bound of Homotopy method becomes O(n3) [Yang et al. (2010)].

In the meantime, numeric approximate methods were proposed such as Soft Shrinkage-

thresholding [Wright et al. (2009)], Proximal Gradient [Becker et al. (2011)], and Alternating

Direction [Yang and Zhang (2011)]. Instead of directly solving unconstraint BPDN problem

as Homotopy method, in Soft Shrinkage-thresholding approach [Wright et al. (2009)], Wright

and etc. replaced hessian matrix with an approximated diagonal matrix, and used light-weight

vector operations or vector-matrix multiplications to keep track of the updates for advanced

matrix decomposition (QRD, LUD). As a representative of another class of approximate algo-

rithm, Proximal Gradient was presented by Becker and etc., which iteratively form quadratic

approximations to the original cost function at carefully selected points, and minimize those

approximations for closer solution sets to the exact ones [Becker et al. (2011)]. In the recent

years, Yang and etc. proposed a novel procedure, named as Alternating Direct method, to

solve the (8.3) through alternating between optimizing the `1-norm of the sparse signal and

`2-penalty of the residual term [Yang and Zhang (2011)]. Although the investigations of ap-

proximate methods demonstrates oblivious performance advantages in speed, their accuracy

is limited especially when the dataset is highly corrupted [Yang et al. (2010)]. Thus, it is

necessary to explore high performance implementations for exact solutions.

To improve the computational speed, hardware accelerators (e.g. GPU, FPGA) are used to

parallelize the `1-norm minimization. Among all the advanced algorithms, Orthogonal Match-

ing Pursuit (OMP) [Pati et al. (1993)] is the most frequently selected algorithm for parallel

www.manaraa.com

122

implementation due to its low complexity and acceptable accuracy for many applications. In

[Fang et al. (2011)], Fang and etc. parallelize the Fujimoto’s matrix-vector multiplication algo-

rithm and the matrix-inverse-update algorithm on GPU. In [Blache et al. (2012)], Blache and

etc. identified three computational kernels of OMP process, and proposed high level parallel

strategy for matrix-vector operations and modified Cholesky Decomposition-based matrix in-

verse with FPGA. However, FPGAs are able to provide further accelerations with finer grained

designs. In [Bai et al. (2012)], Bai and etc. implemented vector multiplication unit to parallelize

the vector-matrix multiplication in the incremental QRD of OMP process, and used look-up

table to help accelerate the processing of square root reciprocal on a Virtex FPGA. However,

memory access bandwidth becomes a major limits for the efficiency of parallel implementation.

To optimize the memory usage, Rabah and etc. proposed a pipelined architecture for OMP al-

gorithm, which includes Newton-Raphson iteration-based inter-product computation and inver-

sion, and scalable Moore-Penrose pseudoinversion [Rabah et al. (2015)]. Although quite a few

researches have been conducted to explore high performance OMP implementation for `1-norm

minimization, the limited accuracy and conditional failures of OMP demands the researchers

to accelerate more advanced algorithms. Shia and etc. presented a fast `1-norm minimization

implementation on GPU for robust face recognition, which parallelized Augmented Lagrangian

Method (ALM), whose kernel involves vector algebra and matrix-vector multiplication [Shia

et al. (2011)]. Ang and etc. proposed an FPGA-based embedded-friendly BPDN solver, whose

computational intensive kernels are implemented by pipelining and parallell processing [Ang

and Kumar (2013)]. However, their implementations limited the parallelism to simple matrix-

vector operations, and it fails to achieve the FPGAs provided potentials of accelerating more

advanced matrix computation.

8.5 Modified Homotopy algorithm for `1-norm minimization

Homotopy algorithm for `1-norm minimization traces a solution path to solve the quadratic

optimization of eq. (8.3) in a piecewise manner. To improve the accuracy and unity, the

Homotopy algorithm for `1-norm minimization is reformulated as eq. (8.9) [Asif and Romberg

(2013)], where W is a diagonal matrix with positive weights as the diagonal elements, and u

www.manaraa.com

123

is defined as −Wẑ −AT (Ax̂− b). In this equation, x̂ is an initial solution of this optimization

problem, and ẑ is the sign sequence vector of x̂. In this way, the optimization solution path

is determined by moving the Homotopy parameter ε from 0 to 1. The convergence can be

reached faster if an initial value of x̂ is provided, otherwise x̂ is given as 0. The first active

support set is determined by calculating the index of arg maxnj=1 ‖ATj b‖ if no initial active

support set is provided, and in practice u is computed through matrix decomposition such as

QR Decomposition or LU Decomposition.

minimize
x

‖Wx‖1 +
1

2
‖b−Ax‖22 + (1− ε)uTx (8.9)

The Homotopy `1-norm minimization iteratively identifies “break points”, calculates moving

direction and step size, tracks the change of the homotopy parameter and solution, and updates

the active support set until the convergence is reached when ε no less than 1. The computation

of the Homotopy path direction update and step size is identified as the performance dominant

component in each iteration, and it is typically calculated through rank-1 update on matrix

factor when an index is added or removed to or from the active support set. To optimize the

number of iterations for approaching the convergence, the active support set can be updated

with numerous indexes in a single iteration. However, a full matrix decomposition has to be

performed. Both the rank-1 update of matrix factor or the full matrix decomposition leave the

space for the acceleration with parallel and pipelined implementations.

Each iteration of Homotopy `1-norm minimization is started with computing the subdif-

ferential of x by either matrix factor rank-1 update or new matrix decomposition. Then, the

optimality parameters p and q are calculated mainly with matrix-vector operations, and they

can be performed partially in parallel with the subdiffrential of x depends on their data de-

pendencies. Parallel comparisons are performed afterwards to determine the step size to next

“break point”. After determining the step size, stopping criteria is evaluated, and convergence

is considered reached as ε passes over 1. Unless the stop criteria is met, the x and ε are up-

dated with the resulted direction value and step size, and the active support set is updated

accordingly.

www.manaraa.com

124

Input: A full rank matrix A ∈ Rm×n (m < n), and a vector b ∈ Rm, an optional

diagonal matrix W ∈ Rm×m with positive weights as elements

Output: x∗

Initialization: x← 0 (or x̂), ε← 0, the first support index: i← arg maxnj=1 ‖ATj b‖,
Γ = {i}, u is the decomposition factors of ATΓAΓ.

repeat

Compute ∂x = (ATΓAΓ)−1uΓ on the support of Γ, otherwise 0 /* Update the

direction */

Compute optimality condition parameters p and q p← ATi (Ax∗ − b) + (1− ε)u
q ← δ(ATi A∂x− u)

Compute δ+ and δ− /* Compute the step size */

δ+ ← mini∈Γc(w−pq , −w−pq)+

δ− ← mini∈Γ(−x
∗

∂x)+

δ∗ ← min(δ
+, δ−)

/* Evaluate the stopping criterion */

if ε+ δ∗ > 1 then

δ∗ ← 1− ε
x∗ ← x∗ + δ∗∂x /* Solution for the output */

break
end

x∗ ← x∗ + δ∗∂x /* Solution update */

ε← ε+ δ∗ /* Homotopy parameter update */

if δ∗ = δ+ then

Γ← Γ ∪ {i}+
/* Add (a) new element(s) to the support */

end

else

Γ← Γ \ {i}−
/* Remove (a) element(s) from the support */

end

until ε = 1
Algorithm 5: Modified Homotopy algorithm for `1-norm minimization

www.manaraa.com

125

The update of active support set is either adding new element(s) to the support set if

the optimality condition is violated or dropping the element(s) from the support set once the

element(s) in the active support set cross zero. If only one element is updated with the active

support set, the computing of direction can be performed through rank-1 update on matrix

factor, whose time complexity is O(n2) if the matrix is sufficient dense. However, large number

of iterations are required to reach the convergence along the path. Full matrix decomposition,

whose time complexity is O(n3), will be needed for the occurrence of numerous elements enter

the active support set in a single iteration.

In the sequential Homotopy algorithm, only one element is either added into or removed

from the active support set, and rank-1 updates are performed on the matrix factor, due to

the better efficiency of a rank-1 update than a full matrix decomposition. However, parallel

implementation can highly improve the performance of the matrix decomposition. The update

with one or multiple elements on active support set in one iteration may lead to better efficiency.

Therefore, the algorithm can be modified to parallelize both the rank-1 update and matrix

decomposition, and either of them is used in the update process depending on the requirement

of efficiency and accuracy.

8.6 Configurable architecture for `1-norm minimization

The configurable architecture for `1-norm minimization primarily consists of two process-

ing components: Matrix-vector computation component and Matrix factorization component, in

which the Matrix-vector computation component performs matrix-vector operations (e.g. mul-

tiplication, addition, and subtraction) at different phases of the minimization process, while the

Matrix factorization component is used to calculate Cholesky Decomposition, rank-1 Cholesky

update, and the matrix inverse. Fig. 8.1 provides a high-level view of how these components

are related within our architecture, in which additional control and storage elements are used.

8.6.1 The Matrix-vector computation component

The Matrix-vector computation component (shown in Fig. 8.2) consists of numerous lay-

ers of pipelined multiplier arrays, in which operand can be reused by multipliers in the same

www.manaraa.com

126

Figure 8.1: Block diagram of the proposed architecture for `1-norm minimization.

layer. The resulting product of a multiplier is summed up with the results of its correspond-

ing multiplications across layers, after which all the resulted sums are further added up. The

Matrix-vector computation component is reconfigurable to perform different matrix-vector op-

erations through collecting the outputs for this component at different levels of computational

cores (see the dashed lines and arrows of Fig. 8.2). The first level output produces a series of

simple vector element-wise multiplication-addition results, while multiple products of indepen-

dent vector-vector multiplications can be obtained at the second level output simultaneously.

If all the multipliers are applied with the elements from same vector, the vector-vector mul-

tiplication result is collected at the third level output, which produces the smaller number of

results with a shorter latency compared to the configuration with second level outputs used.

8.6.1.1 Initial setup process

`1-norm minimization initialized by matrix vector multiplication of −AT ∗ b with initial

solution sets collected (refer B.1). In this case, matrix elements from the same vector are

applied to multipliers in the same layer simultaneously, and to multipliers across layers in

pipelining. The architecture is configured to produce the results at the third output level,

www.manaraa.com

127

Figure 8.2: The architecture of the Matrix-vector computation component.

www.manaraa.com

128

which is followed by using floating comparison logic to determine the index of the resulted

vector element with largest value. BRAMs are used to hold the values of the calculated the

defined parameter vector u, the primal solution vector ps, and its respective sign vector.

8.6.1.2 Update direction computation process

The update direction is computed by Cholesky Decomposition (refer B.2), which requires

the input matrix to be symmetric. The matrix symmetrization is performed by the architecture

of the Matrix-vector computation component (shown in Fig. 8.2), in which matrix row elements

are streamed into this component from the two sides of the architecture, and this multi-layer

multiplier-array is functioning as a systolic array. The elements applied to the multipliers

have one clock cycle delay from layer to layer as the partial products between matrix vectors

is collected across layers. Due to the resulted matrix is symmetric, only the elements of a

triangular matrix are needed to be calculated. Registers are used among the multipliers in the

same layer to synchronize the movement of matrix element and restrict the computations to

be performed for either the upper or lower triangular part of the resulted matrix. Fig. 8.3, 8.4

and 8.5 demonstrate the first a few states of performing matrix symmetrizing process by using

the Matrix-vector architecture, in which Fig. 8.3a-8.4b show the example data applying to all

four layers of the architecture, while Fig. 8.5 only demonstrates the subsequent data movements

in a single layer.

8.6.1.3 Step size computation process

After the completion of the initial setup and update direction computation, the optimization

enters the iterative process until the convergence is reached. To compute the step size, solution

vectors are used to determine the step size(s) for next “break point”, and the detail computation

can be referred at B.3. In our hardware solution, ds are computed by the Matrix-vector

computation component.

www.manaraa.com

129

(a) The initial state

(b) The first computing state

Figure 8.3: The process of the matrix A symmetrization with the Matrix-vector architecture.

www.manaraa.com

130

(a) The second computing state

(b) The third computing state

Figure 8.4: The process of the matrix A symmetrization with the Matrix-vector architecture

(continued).

www.manaraa.com

131

Figure 8.5: The process of the matrix A symmetrization with the Matrix-vector architecture

(continued).

8.6.1.4 Support set update process

When an appropriate step size is determined, the step ε is updated as ε = ε + δ, and the

largest δ value will be used if the step size is a vector. Then, solution xs will be updated as

xs = xs + δ ∗ dirx, which is performed on the Matrix-vector multiplication component with

level-1 output used. The registers signify the support set will be updated as the bit turn from

0 to 1 indicates the corresponding element enter the support set, otherwise, the element leaves.

The update of support set registers can be performed in parallel with other computations.

8.6.1.5 Cholesky rank-1 update process

Cholesky Decomposition, and the matrix symmetrization are computationally expensive

with a time complexity of O(n3). To alleviate the computational burden, rank-1 update on the

Cholesky factor is used as an alternative method to keep track of the direction along the Homo-

topy path with better efficiency. The Cholesky rank-1 update uses O(n2) operations. However,

it requires to be performed every time after a single element change of the support set. Both

the Cholesky Decomposition and the Cholesky rank-1 update are the performance dominant

of the entire minimization process, and they have their own advantages in determining the di-

www.manaraa.com

132

Figure 8.6: The architecture of the Matrix factorization component.

rection vector dirx. Cholesky Decomposition are able to be performed once on solving matrix

after a few elements either entering or leaving the active support set, which can largely reduce

the number of iterations for achieving convergence, especially when the support set is small

or sparse. However, significant advantages on execution speed can be observed by Cholesky

rank-1 update when the support set grows to a large scale. Our architecture can be config-

ured to perform either Cholesky Decomposition and Cholesky rank-1 update dynamically with

the same hardware resources. The Cholesky rank-1 update (refer B.5) includes the processes

for support set element insertion and deletion [Sjöstrand (2005)], and they are calculated by

both the Matrix-vector computation component and the Matrix-factorization component, in

which the Matrix-vector computation component is used to perform matrix-vector calculations

required in the update process.

8.6.1.6 Stop criterion evaluation process

The minimization process will be terminated as ε reaches 1. Then, the final step is updated

as Algo. 11, after which the Matrix-computation component is used to perform simple vector

operations for producing the final output solution vector xs.

www.manaraa.com

133

Figure 8.7: The architecture of update element in the Matrix factorization component.

8.6.2 The Matrix factorization component

The Matrix factorization component provides hardware solutions for full Cholesky Decom-

position or Cholesky rank-1 updates on symmetric matrix, and matrix inverse on triangular

matrix. Both of Cholesky Decomposition and Cholesky rank-1 updates mainly involves with

element-wise operations of division, square roots, and multiplication-addition, while matrix in-

verse on triangular matrix is computed by parallel backward substitution. The architecture of

the Matrix factorization component is introduced in Fig. 8.6, which contains division, square

root operators, and a series of update elements. The update element (see Fig. 8.7) performs

updates on vector elements if they are affected by computations on the elements from the same

row or column which they belong to. As all the computational operators are fully pipelined

with floating-point operations, each update element is responsible for the calculations on ele-

ments in a vector or matrix partition. BRAMs are used to temporarily hold matrix or vector

elements in each update element, and finite state machines are defined to manage the move-

www.manaraa.com

134

ment of the element and update parameters. To synchronize the operations between various

computational component within this architecture, FIFOs are used to transfer the data and its

respective matrix or vector indexes.

8.6.2.1 Cholesky Decomposition

To determine the update direction, Cholesky Decomposition is performed. In the update

direction computation process, after the matrix is symmetrized, the resulted matrix data are

sent to the Matrix factorization component for Cholesky Decomposition. The Cholesky Decom-

position updates the matrix diagonal and off-diagonal elements with other processed matrix

elements from the same column and row vectors before they are applied to the regularization

process with square roots and division. Eq. 8.10 and Eq. 8.11 give the detail calculations of

Cholesky Decomposition, which process is conducted vector by vector with diagonal element

calculated first, and followed by the calculations of vector off-diagonal elements. At runtime,

vector elements are averagely distributed to the Update elements, in which locally stored Update

parameters are used to prepare the elements for regularization operations. After the comple-

tion of updates, vector elements are transferred to designated FIFOs, the buffers to pipelined

square roots and division operators. Then, the calculated elements are further coupled with

other processed elements to modify the value of the Update parameters, which are hold locally

in the BRAMs of the Update elements. For example, matrix element A3,7 is first preprocessed

by the Update parameter with indexes of (3, 7), and then divided by its corresponding diagonal

element. After the A3,7 is factored, it is used to be paired with other factored element in the

same vector such as (A3,8) to change the value of corresponding Update parameter at (7, 8).

Ri,i =

√√√√Ai,i −
i−1∑
k=1

R2
k,i (8.10)

Ri,j =
Ai,j −

∑i−1
k=1Rk,i ∗Rk,j
Ri,i

(8.11)

www.manaraa.com

135

Figure 8.8: The diagram of the matrix inverse process.

8.6.2.2 Matrix inverse

Cholesky Decomposition produces an upper triangular matrix, which is then applied by

backward substitution for a matrix inverse. The matrix factorization component is used for

matrix inverse, in which all the diagonal elements are first performed with division operations

in pipelining. Then, all the remaining off-diagonal elements are averagely distributed to the

Update Elements diagonally, and update elements on every diagonal vector by vector with data

movements take place among the Update Elements accordingly. Fig. 8.8 provides a diagram of

the matrix inverse.

As the matrix size grows larger than a threshold such as 64, the matrix vectors are parti-

tioned, which every sub-vector is calculated with symmetrization, decomposition, and inverse

subsequently. After the matrix inverse is obtained, they are sent to the Matrix-vector multipli-

cation component to produce the updated direction vector with matrix-vector multiplications.

The overlap of matrix symmetrization, decomposition, inverse, and multiplications of various

sub-vectors help improve the parallelism.

www.manaraa.com

136

Figure 8.9: The diagram of Matrix factorization component with reconfiguration to Cholesky

rank-1 update.

8.6.2.3 Cholesky rank-1 update process

In this proposed hardware solution, the Matrix-vector computation component is used to

conduct the matrix-vector multiplication, while the update of the inverse of Cholesky factor R,

and vector-vector operations for calculating the new diagonal elements of Cholesky factor R

and direction vector dirx is performed by the Matrix-factorization component. When compute

parallel vector-vector multiplication, the Matrix factorization component is reconfigured to a

1-dimensional systolic-array, which is demonstrated in Fig. 8.9. Vector elements are averagely

distributed to Update element, and local memory in each Update element hold partial results

of vector operations. After partial results of an Update element is calculated, it will be moved

rightwards to be added up with other partial results, and the final result is produced once the

accumulation reaches the last Update element.

In the Cholesky rank-1 deletion update, the Givens rotation is performed by the Matrix

factorization component, in which division and square root operators are used to calculate

the rotation angle parameters cos and sin, while Update elements are used to update affected

vector elements with rotation angle parameters (see Fig. 8.9). The vector elements are moved

leftwards for rotation iteratively.

www.manaraa.com

137

8.7 Implementation and Evaluation

8.7.1 Implementation and Experimental Setup

We evaluate our proposed hardware solution for Homotopy Algorithm `1-norm minimization

with Convey Computer HC-2 system [Convey Computer HC-2 (2012)], a hybrid-core system

coupled standard Intel based server with Xilinx Virtex-5 XC5VLX330 FPGAs as co-processor.

To optimize the speed, we generate the double-precision floating-point computational cores

(adder, multiplier, divisor, square roots, floating-point comparator) by using Xilinx Coregen

generator [Xilinx Inc. (2012)]. In the Matrix-vector computation component, four layers of

multiplier-array are implemented, in which 16 multipliers and 20 adders are used, among which

5 adders are employed as floating-point accumulators. In the Matrix factorization component,

1 divider, 1 square-root and 8 Update elements are implemented, and in each Update element,

1 adder, 1 multipliers, and simple dual port memory are equipped. In our design, the pipeline

latency of each type of core are configured as 9, 14, 57, 57 clock cycles for multiplication,

addition, division, and square roots, respectfully. BRAMs are used to store the part of input

matrix A, solution vectors, Cholesky factor R and its inverse locally. To improve the local

memory bandwidth and throughput, BRAMs are organized into groups for the storage of on-

chip matrices. By performing the synthesizing and implementation with Xilinx design tools,

our placed and routed design consumes 67.8% of the slice LUTs, 43.75% of DSP48Es and 83.3%

of BRAMs with a maximum frequency of 157 MHz. Re-synthesis is necessary if the property of

input matrices and architectural configuration are changed. We evaluate our system efficiency

by running our implementation with both random datasets of [Asif and Romberg (2013)] and

Yale face matrix [Georghiades et al. (2001); Lee et al. (2005)] at 150 MHz, which is a typical

frequency used in HC-2.

8.7.2 Performance analysis

In this section, we first profile the `1-norm minimization, in which input matrices are of

various dimensions. As demonstrated in Fig. 8.10, more than 70% and 20% of execution time

for `1-norm minimization is used to perform iterative Cholesky rank-1 update and compute

www.manaraa.com

138

step size respectively. Meanwhile, the percentage of time consumption for Cholesky rank-1

update in entire `1-norm minimization increases as the ratio of input column dimension over

row dimension grows. In practice, the Cholesky rank-1 update and step size computing are the

performance dominant for `1-norm minimization.

To analyze the performance, we evaluate input underdetermined system with the dimensions

from 512 to 4096 with certain sparsity level and a signal noise ratio of 40. In this paper, we name

the single Cholesky Decomposition that is performed after n (n¿1) elements entering or leaving

the active support set as rank-n update. We have also configured the system to allow rank-n

update with full Cholesky Decomposition in one iteration. The performance for input matrices

with row dimension as 512 and various column dimensions is demonstrated in Fig. 8.11, in

which the number of elements that is allowed to add to the support set in a single iteration

can be configured. By configuring the number n for direction update by rank-n, n elements

will move into the support set if there is a continuous n element that satisfy the condition to

become active, otherwise iterative rank-1 update will be performed. The experimental results

indicate that the execution time grows significantly as the column dimensions increasing due to

more iterations are needed for convergence. With the configuration of n elements are allowed

to be added into the support set, the performance is improved as the number of iterations that

need to be executed are largely reduced. However, many input dataset properties affect the

system performance include the matrix dimensions, sparsity level, and data pattern. When we

configure the experimental datasets with rank-n update and the n grows, the performance is

degraded due to the number of qualified rank-n update iterations decrease.

In Fig. 8.12, the performance of `1-norm minimization with column dimension as 4096 and

various row dimensions is demonstrated. Also, the rank-n configuration is performed. When the

column dimension grows, the execution time increases significantly, and the column dimension

determines the maximum dimension of the support set, which affect the scales of intermediate

matrix computation and operation (e.g. matrix factorization, matrix inverse) within the `1-

norm minimization process. Besides, the on-chip storage is limited, and the column dimension

is a major factor in determining the dimensions of Cholesky factor R. If Cholesky factor R can

be fully maintained on-chip, the I/O burden will be highly alleviated. Similarly, when rank-n

www.manaraa.com

139

Figure 8.10: The profiling results of `1-norm minimization with various dimensional input

datasets.

Figure 8.11: `1-norm minimization computation time (in seconds) for matrices with row di-

mension as 512 and various rank-n update configuration.

www.manaraa.com

140

Figure 8.12: `1-norm minimization computation time (in seconds) for matrices with column

dimension as 512 and various rank-n update configuration.

is configured, the performance will be improved as the number of iterations for convergence is

decreased. The configuration of the number of n for best performance is determined by many

factors such as the properties of input data.

In Fig. 8.13, we have demonstrated the number of iterations required for convergence for

matrices with various dimensions and update configurations. After the configuration of the

rank-n update in one iteration (n is shown in the parenthesis after the dimensions), there

will be three types of iterations: rank-1 add, rank-1 delete, and rank-n add. In the same

random data pattern and sparsity level, the total number of iterations will be reduced as the

more than 1 elements are allowed to be added into the support set in one iteration. However,

when the configuration parameter n increases over a threshold, the number of qualified rank-n

update iteration will be decreased, and the total number of iteration grows. In our architecture,

we implemented both parallel Cholesky Decomposition and Cholesky rank-1 update, and the

number of iterations have significant influence on the performance. We have also demonstrated

the accuracy and potential maximum size of the support set based on the rank-n update

configuration in Table 8.1, which indicates limited accuracy sacrificed with the rank-n update

allowed for the input data with similar property and pattern.

The comparisons of execution time between our implementation and Matlab `1-norm min-

imization program can be seen in Fig. 8.14, in which dimensional speedups of our design

www.manaraa.com

141

Figure 8.13: No. of iterations for convergence with different matrix dimensions and update

configurations.

compared to the Matlab 7.10.0 `1-norm minimization program running on a 2.2 GHz dual

core Intel Xeon processor is demonstrated. We have shown the speedups of our `1-norm min-

imization implementation compared to both the Matlab `1-norm minimization program with

rank-1 update only and with rank-n update configured. By analyzing those data points in Fig.

8.14, our architecture shows better efficiency than Matlab implementations, with a dimensional

speedups that can be achieved range from 3.6× to 9.9× for matrices with dimensions from 512

to 4096.

To further analyze the performance of our hardware solution, we have compared the imple-

mentations with the real-world dataset. We have used Yale Face dataset of [Georghiades et al.

(2001); Lee et al. (2005)] as our benchmark that Yale Face database contains 165 grayscale

images in GIF format of 15 individuals. By configuring our architecture with rank-8 update

allowed, our experimental results shows 3.89× speedup for the input matrix with dimensions

of 165× 1024 without significant accuracy loss.

8.8 Conclusion and Future Work

In this paper, we modify the Homotopy algorithm of `1-norm minimization for better effi-

ciency, which provide the flexibility to add one or more elements into the support set in one

www.manaraa.com

142

Table 8.1: Experimental matrices, properties, and their accuracy.

Dimensions rank-n configuration Max. size of Error rate
support set

512× 1024 1 339 0.004093

512× 1024 8 325 0.004774

512× 1024 16 348 0.005412

512× 1024 32 352 0.008545

512× 1024 64 345 0.01058

1024× 2048 1 665 0.003806

1024× 2048 8 672 0.004166

1024× 2048 16 668 0.004471

1024× 2048 32 671 0.005062

1024× 2048 64 654 0.00829

2048× 2048 1 1323 0.003896

2048× 2048 8 1310 0.004068

2048× 2048 16 1345 0.004352

2048× 2048 32 1323 0.004635

2048× 2048 64 1325 0.004906

iteration. We propose an FPGA implementation for `1-norm minimization with Homotopy

algorithm, which can be dynamically configured to perform either parallel Cholesky Decom-

position or rank-1 update. By analyzing the performance of our proposed hardware solution,

our architecture shows dimensional and application-dependent speedups from 3.6× to 9.9×

compared to optimized software solution with reasonable accuracy achieved.

www.manaraa.com

143

Figure 8.14: The dimensional speedups of our hardware `1-norm minimization solution over

Matlab implementation.

www.manaraa.com

144

CHAPTER 9. FUTURE WORK DISCUSSION

Previous chapters have introduced our work of proposing efficient FPGA-based architectures

for matrix decomposition (e.g., EVD, SVD, QRD, Sparse LUD) and applications (e.g.,Latent

Semantic Indexing and `1-norm minimization). The future research work aims to explore fur-

ther optimization by leveraging the characteristics of the FPGAs. The potential future work

will be primarily developed in two directions: 1), explore hybrid architectures, the FPGA-based

solution to implement multiple algorithms with same hardware resources, which can be con-

figured to execute the most appropriate algorithm at runtime; 2), explore application-specific

architecture to customize the architecture according to the demands of specific applications for

better performance both in speed and power consumption.

9.1 Hybrid architecture

The reconfigurability of FPGAs provides the opportunity to implement multiple algorithms

with the same set of hardware resources. In mathematics, matrix decomposition problems nor-

mally can be solved by various methods, and each of which has its own advantages. Besides,

some of matrix decomposition are computed iteratively until convergence is reached, and better

performance can potentially be achieved if the most proper algorithm is applied in each iter-

ation. For example, to compute SVD, classic algorithms include Householder transformation,

two-sided Jacobi rotation and Hestenes-Jacobi rotation. The Householder transformation is

featured with efficient vectored operations, while Jacobi rotations are easily mapped to paral-

lel platforms. In our research, we explored the FPGA-based SVD architectures for two-sided

Jacobi rotation and Hestenes-Jacobi rotation separately. However, as the dataset changed to

a triangular matrix after the first iteration of Hestenes-Jacobi operation, the systolic array

www.manaraa.com

145

structure we used for two-sided Jacobi rotation would bring benefits in efficiency for the rest

iterations. Thus, a hybrid architecture that can be dynamically configured to the multi-layer

arrays (see Fig. 4.2) and the one-dimensional systolic array (see Fig. 3.4) would potentially

offer additional performance improvement.

9.2 Application-specific architecture

Applications are various in terms of the properties of the input datasets. The properties of

the input data such as dimensions, sparsity and data pattern have significant impact on the

performance of the entire system. The flexibility of FPGAs offer the opportunity to customize

the hardware solution to a more application-specific architecture, which deeply optimize the

performance to meet the requirement of a specific application. By understanding a specific

application features, the limited hardware resources of FPGAs can be arranged accordingly

for better performance. For example, in model reduction [Constantine et al. (2014)], the input

dataset are featured as tall-and-skinny matrix, a rectangular matrix who has far more rows than

columns (m� n). A customized application-specific architecture targeting the tall-and-skinny

matrix can largely reduce the burden of I/O usage, which has become the wild recognized

bottleneck for performance improvement on FPGAs in many scientific and engineering appli-

cations.

www.manaraa.com

146

CHAPTER 10. CONCLUSION

Matrix decomposition is computationally expensive, and it has been widely used in data

mining and signal processing applications. In this dissertation, FPGA-based architectures

have been proposed to perform Eigenvalue Decomposition, Singular Value Decomposition, QR

Decomposition, and sparse LU Decomposition. By using systolic array architecture, an effi-

cient architecture for floating-point Eigenvalue Decomposition is demonstrated, while an FPGA

implementation of the Hestenes-Jacobi algorithm is presented to perform Singular Value De-

composition. In addition, a reconfigurable architecture for QR Decomposition is proposed,

which can be dynamically configured to perform either Householder transformation or Givens

rotation in a manner that takes advantage of the strengths of each. To improve the efficiency

of analyzing sparse dataset, a configurable architecture is introduced for sparse LU Decom-

position, which can analyze both symmetric and asymmetric sparse matrices with arbitrary

sparsity patterns.

This dissertation also applies the architectures of matrix decomposition to perform Latent

Semantic Indexing and `1-norm minimization. By extending the Hestenes-Jacobi SVD archi-

tecture, a deeply pipelined reconfigurable architecture is developed, which performs the matrix

factorization, dimension reduction, computation of vector cosine similarity, and the ranking of

documents simultaneously. Besides, in this research, FPGAs are further used to implement

`1-norm minimization with Homotopy algorithm, in which symmetric LU Decomposition is the

performance dominant. Our experimental results using an FPGA-based hybrid acceleration

system indicate the efficiency of the proposed architectures that offer one or two orders of

magnitude dimension and application-dependent speedups over optimized software implemen-

tations. The analysis of the experimental results indicates that, for some applications, the I/O

bandwidth starts to limit the performance improvement as the dimensions of input matrices

www.manaraa.com

147

grow. In addition, FPGAs have shown the advantages in handling datasets with special data

patterns such as tall-and-skinny or sparse. In the future work, further optimization can be ac-

complished through exploring hybrid architectures and application-specific architectures with

the help of the reconfigurability and flexibility of FPGAs.

www.manaraa.com

148

APPENDIX A. HIGH PERFORMANCE COMPUTING PROCESSORS

AND CONVEY HYBRID-CORE COMPUTING PLATFORM

As the volume of information is increasing continuously at an astonishing rate, the runtime

of many computations grow dramatically, and conventional sequential processing unit is unable

to satisfy the performance requirements of many real-world applications. Many-core processors

have shown the promise in providing high performance solutions for many computing prob-

lems. With the help of the parallel programming technology, problems are partitioned into

subproblems, and multiple light-weight threads can be executed concurrently on a single chip.

To improve the systematic performance, multi-core processors commonly act as co-processors

to assist the conventional processing unit in tackling the computational-intensive problems with

parallel processing. In this appendix, an overview of the most popular high performance accel-

erators, such as GPUs [Keckler et al. (2011)], Xeon Phi coprocessor [Rahman (2013)], FPGAs

[Hauck and DeHon (2007)], are presented. Besides, an FPGA-based hybrid-core computing

platform–Convey system [Brewer (2010)] is introduced.

A.1 High performance accelerators

A.1.1 GPUs

A graphic processing unit (GPU) is a dedicated circuit implementing integrated transform,

lighting, triangle setup/clipping, and rendering engines on a single-chip processor [Keckler

et al. (2011)]. GPUs were originally designed to perform the simplest pixel-drawing functions,

and they are progressed to building transforms, lighting, rasterization, texturing, depth test-

ing, and display with full 3D pipeline [Heinecke et al. (2012)]. To accelerate many real-world

applications, the general purpose GPU (GPGPU) emerges that these graphics-optimized ar-

www.manaraa.com

149

chitectures, which are massively parallel that consist of thousands of small and efficient cores

designed to handle multiple tasks simultaneously, are used to perform non-graphics processing.

As commodity data-parallel processors, GPUs are featured with tremendous computational

capacity and rapid growth curve, and they have shown the promise in performing domain-

specialized data-parallel computing, whose performance far outstrip traditional CPUs [Luebke

and Humphreys (2007)].

Figure A.1: Design philosophies behind CPUs and GPUs [Kirk and Hwu (2010)]

To achieve high throughput, GPUs perform stream processing to solve problems that toler-

ate high latencies. In Fig. A.1, the design philosophies behind CPUs and GPUs are illustrated,

and compare to traditional CPU, GPUs uses more transistor area for computing units and

less area for cache [Glaskowsky (2009)]. Fig. A.2 demonstrated an example GPU architecture

with CUDA-capable, which consists of an array of highly threaded streaming multiprocessor

(SMs), whose quantity could be vary from GPU to GPU [Kirk and Hwu (2010)]. GeForce

8800 is a CUDA-capable GPU, and it has 16 stream multiprocessors, each of which contains

8 unified streaming processors (cores). A streaming processor (core) is a fully pipelined and

multithreaded computational engine that support 96 threads, couple with a register file in-

cluding 1024 scalar 32-bit registers. It implements all 32-bit and 64-bit integer arithmetic,

comparison, conversion, logic instructions, as well as IEEE-754 single-precision floating-point

operations. Besides, a stream multiprocessor contains two special function unit and a IEEE-754

www.manaraa.com

150

double-precision function unit to perform the computations of special functions such as the tran-

scendental functions, reciprocals, square roots, and IEEE-754 double-precision floating-point

operations, respectively. During runtime, workloads are partitioned into blocks of threads, and

a group of 32 threads are named as a warp, which is the primitive unit of scheduling and

execute the same instruction at a time [Lindholm and Oberman (2007)].

Figure A.2: An example of CUDA-capable GPU architecture [Kirk and Hwu (2010)]

GPUs implement multithreading technology, and they rely on sufficient threads to hide

latency instead of using multi-level cache. With the extensive parallelism, GPUs are often used

as a powerful computational engine to acheive high performance. Compared to conventional

CPU, the main memory of GPU is designed for high bandwidth rather than low latency [Kirk

and Hwu (2010)].

A.1.2 Xeon Phi coprocessor

Xeon Phi is a coprocessor introduced by incorporating Intel Many Integrated Core Ar-

chitecture [Rahman (2013)]. The Intel Xeon Phi coprocessor provides up to or more than 50

www.manaraa.com

151

in-order cores, in which individual cores are associated with each other by passing data through

fully coherent caches, and communicate in a bidirectional ring. The processor core is shown

in Fig. A.3, which consists of instruction decoder, scalar unit, vector unit, related registers

and hierarchical caches [Jeffers and Reinders (2013)]. The scalar unit is pipelined and Intel

Pentium processor based, and it is enabled with dual issue of scalar instructions with through-

put of one-per-clock cycle. A fully functional multi-threaded vector unit is included in the

Xeon Phi coprocessor, and the existing vector unit supports 512-bit SIMD Instructions with

numerous 512-bit wide vector registers are available [Rahman (2013)]. In a single core, there

are four hardware threads, each of which issues instruction in turn, and execute instruction

in round-robin to hide the latency. Fully-coherent L1 and L2 caches are equipped with each

processor core [Jeffers and Reinders (2013)].

Figure A.3: The architecture of Intel Xeon Phi Coprocessor core [Jeffers and Reinders (2013)]

A.1.3 FPGA and reconfigurable computing technology

FPGA is an integrated circuit composed of configurable logic blocks (CLB) and pro-

grammable interconnections (as shown in Fig. A.4) [Hauck and DeHon (2007)]. A configurable

logic block (CLB) can be programmed individually to perform unique function. It normally

consists of numerous logic cells, each of which typically includes a 4-input LUT, a full adder

www.manaraa.com

152

and a D-type flip-flop. As shown in Fig. A.5, a 4-input LUT is made up by two 3-input LUTs.

By using multiplexers, CLB can be operated in normal mode, which is defined mainly for

general logic applications and combinational functions. Another mode is named as arithmetic

mode, and it implements adders, counters, accumulators, and comparators [Hauck and DeHon

(2007)]. Recent FPGA platforms employ 6-input LUT with fully independent inputs instead

of conventional 4-input LUT, which optimizes trade-off between critical path delay and design

die size [Cosoroaba and Rivoallon (2006)].

Figure A.4: The general architecture of FPGAs [Kuon et al. (2008)]

Figure A.5: An example architecture of FPGA logic block [Kuon et al. (2008)]

www.manaraa.com

153

Each input pin has a connection to one side of the logic block, and the output channels to

the right and below of the logic block connect to routing wires. Both the input and output

pins of logic block are able to be connected to any wiring segment in the adjacent channels.

In the similar way, the I/O pad can also communicate with adjacent channels by establishing

connections between I/O pad to any wiring segment in them [Kuon et al. (2008)].

The routing of FPGA is unsegmented that a wiring segment connects one logic block to

a switch box only. An example topology of switch box is demonstrated in Fig. A.6, in which

longer paths can be built by configuring programmable switches in a switch box. In practice,

to archive higher speed interconnection, longer routing wires that span numerous logic blocks

are used in many of today’s FPGA implementations [Kuon et al. (2008)].

Figure A.6: The example topology of switch box [Kuon et al. (2008)]

Researches were conducted to evaluate the potentials of using the input pin doglegs to

connect more than one routing wire segment to the same logic input pin. To establish more

efficient connections, the actual routing architecture of SRAM-based FPGAs implement a buffer

between routing tracks and input pins, instead of using the input pin doglegs. Similarly, a set

of independent pass transistors is replaced by multiplexers to build connections between wire

segments and input pins for the sake of area optimization [Hauck and DeHon (2007)].

A.2 Convey hybrid-core computing platform

Hybrid-core is considered as a breakthrough technology in solving the issue of power limi-

tation happen to conventional processor. The Convey’s hybrid-core platform implements het-

www.manaraa.com

154

erogeneous architecture by combining the commodity processors with an application-specific

hardware design. To expand the capabilities of the commodity processors, the Convey hybrid-

core system implements reconfigurable coprocessor, by which the instructions are executed as

extensions to the x86 instruction set, and customizable for the requirement of application-

specific computations [Convey Computer (2012)].

Figure A.7: The Convey Hybrid-Core Architecture [Convey Computer HC-2 (2012)]

As shown in Fig. A.7, the Convey computer implements commodity FPGAs as coprocessor

coupled with standard multi-core Intel Xeon processors. The host processor and coprocessor

have their own local memories physically. However, all the local memories are globally address-

able with their coherence protected. The Convey computer outperforms conventional processors

with improved application performance, enhanced functionality, and increased operational effi-

ciency. It accelerates the computations by parallelizing the computational-intensive kernels of

the application with the FPGA-based coprocessor. According to the user manual of Convey

computer, it provides a wide range of configurations, with which developers can select from a

combination of models, memory configuration, and I/O devices to meet the application-specific

demands [Convey Computer (2012)].

HC-2 and HC-2ex are the latest models of Convey computer, both of which consist of

host system and coprocessors. The host system is equipped with Intel processors, on which

industry-standard Linux is running. Meanwhile, host processor supports standard network-

ing and interconnect fabrics capable for clustering. The coprocessor system contains multiple

FPGAs that perform application-specific operations (called personalities) [Convey Computer

www.manaraa.com

155

HC-2 (2012)]. The Convey platform supports different instruction sets in a common hardware

platform largely reduce the time for developing the application or algorithm-specific instruc-

tion sets. At runtime, the personalities are wrapped into components, which can be reloaded

dynamically, and customize the supported instruction set based on the application-specific re-

quirement. A personality contains the base instruction set for scalar operations and execution

control, and a set of extended instructions that are designed for application-specific manipula-

tions [Convey Computer PDK (2012)].

Figure A.8: The Convey HC-2 memory subsystem [Convey Computer HC-2 (2012)]

As shown in Fig. A.8, the coprocessor consists of three major components that the Applica-

tion Hub (AEH), the Memory Subsystem (MCs), and the Application Engines (AEs). Among

them, AEH acts as the control center for the coprocessor, and it is responsible for the imple-

mentation of hybrid-core memory interconnect (HCMI) to the host system, the management

of communications between the host and coprocessor, and the routing of coprocessor memory

access requests to proper MCs [Convey Computer HC-2 (2012)].

In both of the Convey HC-2 and HC-2ex computer, eight MCs with a total of 16 DDR2

memory channels are equipped, which optimizes the communications between AEs and the

physical memory of coprocessor with highly parallel channels and large bandwidth. By lever-

aging Convey designed Scatter-Gather DIMMs, the system support random memory access,

which can largely improve the performance for applications [Convey Computer HC-2 (2012)].

www.manaraa.com

156

The application-specific computational operations are implemented on the Application En-

gines (AEs), which are considered as the core of the coprocessor. On the Convey platform,

multiple AEs are equipped in the coprocessor. AEs are connected to the AEH via a command

bus, who is responsible for the communication of the opcodes and scalar operands. AEs are

also connected to every MCs through a network with point-to-point linkage [Villarreal et al.

(2010)]. AE instructions are delivered to all of the AEs, and their executions are controlled

by the personality according to its design. In a single AE, the FPGA can operate many func-

tional components concurrently, and the performance optimization of coprocessor has been

transformed into the pursuit of high degree of parallelism [Convey Computer HC-2 (2012)].

www.manaraa.com

157

APPENDIX B. HOMOTOPY `1-NORM MINIMIZATION ALGORITHM

The Homotopy algorithm is an iterative process that construct a decreasing sequence of reg-

ularization parameter, and identify “break points” along the path with the variable associated

support set updated by adding or removing components [Yang et al. (2010)]. In this chapter,

the modified Homotpy `1-norm minimization algorithm is described [Asif and Romberg (2014)],

which introduces more flexibility of adding one or more active elements to the support set in

one iteration for better efficiency.

B.1 Initial setup process

Input: A full rank matrix A ∈ Rm×n (m < n), and a vector b ∈ Rm

/* Compute the initial primal and dual solution */

ps← −AT ∗ b
ds← 0

xs← 0

/* Initialize support set setup */

[value gammax] = max(abs(ps))

signx = zeros(N, 1)

signx(gammax) = −sign(ps(gammax))

idelta← gammax(1)

flag ← 1

/* Add element to active support set when flag equal to 1, otherwise

remove element */

/* Update defined parameters (u is defined as

−Weight ∗ sign(ps)−A′ ∗ (A ∗ ps− b) */

u = −Weight. ∗ signx − ps
ps = ps+ u

/* Initialize the step */

epsilon = 0
Algorithm 6: Solution and support set initialization

www.manaraa.com

158

The Initial setup process is responsible for computing the initial primal and dual solution,

and determine the first active element in the initial support set. By assuming no initial solution

is provided, the `1-norm minimization process is started by the matrix vector multiplication

of −AT ∗ b. Comparisons are performed to locate the first element to be added in the active

support set. The detail process of solution and support set initialization is described in Algo. 6.

B.2 Update direction computation process

Input: A full rank matrix A ∈ Rm×n (m < n), and a vector b ∈ Rm

/* Cholesky Decomposition on A */

R← chol(A(:, gammax)T ∗A(:, gammax))

/* Update of direction with triangular matrix inverse */

dirx← R−1 ∗ ((R−1)T) ∗ u(gammax))
Algorithm 7: Initial computation of update direction

After the completion of the Inital setup process, to determine the starting update direc-

tion, the computation of the update direction is performed by Cholesky Decomposition and

triangular matrix inverse (see Algo. 7). Due to Cholesky Decomposition requires the dataset to

be symmetric, the support set based submatrix of A has to be symmetrized first, after which

Cholesky Decomposition is applied to. Then, the resulted upper triangular matrix R is calcu-

lated for its inverse through backward substitution. The Update direction computation process

is ended by matrix-vector multiplications between the triangular matrix inverse R−1 and the

defined parameter u. The Homotopy algorithm for `1-norm minimization starts with empty

active support set, and the initial update direction computation only involves with numeri-

cal elements operations. However, as the size of support set increases iteratively, the update

direction computations become the performance dominator for the entire process of `1-norm

minimization. The full Cholesky Decomposition has to be performed to determine the moving

direction of the Homotopy path if multiple new active elements are added to the support set

in one iteration. Otherwise, iterative running rank-1 Cholesky update is required every time

after a single support set element change. The appropriate usage of Cholesky Decomposition

can largely reduce the number of iterations for convergence, and save computational time with

sacrificing of reasonable accuracy.

www.manaraa.com

159

B.3 Step size computation process

When the initial solution, support set, and optimization direction along Homotopy path is

available, then the `1-norm minimization enters an iterative process until the convergence is

reached. The step sizes are determined by primal, dual and original solution vectors ps, ds,

xs through simple matrix-vector operations (see Algo. 8). The step sizes are determined by

selecting one or more step sizes with minimum positive values. If one step size is chosen, one

register is used to always hold currently minimum positive value, after which rank-1 update

will be performed. Otherwise, multiple continuous step sizes are selected.

Input: A full rank matrix A ∈ Rm×n (m < n), the direction vector dirx, the defined

vector u, and the solution vectors ps, ds, xs

/* Update dual solution with direction vector */

ds← A′ ∗A ∗ dirx− u
/* Compute step size candidate vectors */

δ1 ← (Weight− ps)./ds
δ2 ← (−Weight− ps)./ds
δ3 ← −xs(gammax)./dirx(gammax)

/* Determine the action and step sizes */

if min(minpos(δ1),minpos(δ2)) < minpos(δ3)) then
flag ← 1

end

/* Add element to active support set when flag equal to 1, otherwise

remove element */

else
flag ← 0

end

if flag == 1 then
δ ← minn(minpos(δ1),minpos(δ2))

end

/* n elements should be smaller than the minimum positive of δ3 */

else
δ ← minn(minpos(δ3))

end

/* n elements should be smaller than the minimum positive of δ1 and δ2 */
Algorithm 8: The step size computation

www.manaraa.com

160

B.4 Support set update process

After appropriate step size is determined, the step ε is updated as ε = ε + δ, and the

largest δ value will be used if the step size is a vector. Then, solution xs will be updated as

xs = xs+ δ ∗ dirx.

B.5 Cholesky rank-1 update process

Input: A full rank matrix A ∈ Rm×n (m < n), the vector index of added element

addindex, the previous calculated Cholesky factor R, and the direction vector

dirx

addx ← A(:, addindex)

diag ← addTx ∗ addx
AAk ← (A(:, gammax)T ∗A(:, gammax))(:, k)

/* k is the support set element number after 1 insertion */

Rk ← (RT)−1 ∗AAk
/* New vector of Cholesky factor R */

Rdiag ←
√
diag −RTk ∗Rk

/* New diagonal element of Cholesky factor R */

R(:, k)← [Rk;Rdiag]

R(k, :)← [zeros(k − 1) Rdiag]

upd← R−1 ∗ [zeros(k − 1); 1]

dirx← [dirx; 0] + (updT ∗ u([gammax; addx])) ∗ upd
/* Update direction vector with updated Cholesky factor R */

gammax ← [gammax; addx]

/* Add new element to support set */
Algorithm 9: Cholesky rank-1 update as one element added

The Cholesky rank-1 update includes the processes for support set element insertion and

deletion [Sjöstrand (2005)]. With a new element added into the support set, its corresponding

vectors in original matrix A, the symmetrized matrix AT ∗A, and the current Cholesky factor

R are used to calculate the new vector elements for R. Then, the newly constructed Cholesky

factor R is used to update the direction vector dirx. This update process involves with simple

matrix-vector operations, and the detail computations can be seen in Algo. 9.

Compared to element insertion, the Cholesky rank-1 update after element deletion requires

more complicated operations. After the removal of an arbitrary vector, iterative Givens rota-

tions [Bindel et al. (2002)] are performed from this column to the end of the matrix to annihilate

www.manaraa.com

161

Input: The previous calculated Cholesky factor R, the direction vector dirx, and the

vector index of delete element deleteindex,

n← size(R)

R(:, deleteindex)← []

/* Remove the column */

for k = deleteindex → (n− 2) do

r ←
√
R(k, k)2 +R(k + 1, k)2

cos← R(k,k)
r

sin← −R(k+1,k)
r

R(k, k)← r

/* Zero out element by using Givens rotation */

for m = k + 1→ n− 1 do

R(k,m)← R(k,m) ∗ cos−R(k + 1,m) ∗ sin
R(k + 1,m)← R(k,m) ∗ sin+R(k + 1,m) ∗ cos

end

/* Update the rest elements affected by Givens rotation */

end

R(n, :) = [] /* Remove last row */

dirx← R−1 ∗ ((R−1)T) ∗ u(gammax))

/* Update of direction with triangular matrix inverse */
Algorithm 10: Cholesky rank-1 update as one element deleted

non-zero off-diagonals in the lower triangular part of the matrix. Then, matrix inverse is per-

formed on updated R, whose result is used to calculate the new direction vector dirx (see Algo.

10).

B.6 Stop criterion evaluation process

Input: Step parameter ε, the direction vector dirx, and the solution vectors ps, xs

if ε > 1 then

δ ← 1− ε /* Update final step size */

xs← xs+ δ ∗ dirx /* update solution vector */

end
Algorithm 11: Stop criterion evaluation process

The minimization process will be terminated as ε reaches 1. Then, the final step size and

solution xs are updated accordingly as Algo. 11.

www.manaraa.com

162

BIBLIOGRAPHY

Ahmedsaid, A., Amira, A., and Bouridane, A. (2003). Improved SVD systolic array and imple-

mentation on FPGA. Proceedings of IEEE International Conference on Field-Programmable

Technology (FPT), pages 35–42.

Anderson, M. J., Ballard, G., Demmel, J., and Keutzer, K. (2011). Communication-avoiding

QR Decomposition for GPUs. Proceedings of the IEEE International Symposium on Parallel

and Distributed Processing (IPDPS), pages 48–58.

Ang, Z. P. and Kumar, A. (2013). Real-time and low power embedded `1-optimization solver

design. Proceedings of International Conference on Field-Programmable Technology, pages

168–175.

Asif, M. S. and Romberg, J. (2014). Sparse recovery of streaming signals using `1-homotopy.

IEEE Transactions on Signal Processing, 62(16):4209–4223.

Asif, M. S. and Romberg, J. K. (2013). Sparse recovery of streaming signals using `1-homotopy.

CoRR, abs/1306.3331.

Aslan, S., Niu, S., and Saniie, J. (2012). FPGA implementation of fast QR Decomposition

based on Givens rotation. Proceedings of the IEEE International Midwest Symposium on

Circuits and Systems (MWSCAS), pages 470–473.

Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle, O., and

Weinberger, K. (2009). Supervised semantic indexing. Proceedings of the ACM Conference

on Information and Knowledge Management, pages 187–196.

www.manaraa.com

163

Bai, L., Maechler, P., Muehlberghuber, M., and Kaeslin, H. (2012). High-speed compressed

sensing reconstruction on FPGA using OMP and AMP. Proceedings of IEEE International

Conference on Electronics, Circuits and Systems, pages 53–56.

Bečka, M., Okša, G., and Vajteršic, M. (2012). Parallel Block-Jacobi SVD Methods. Springer

London, London.

Becker, S., Bobin, J., and Cands, E. J. (2011). Nesta: A fast and accurate first-order method

for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39.

Bertrand, A. and Moonen, M. (2011). Consensus-based distributed total least squares estima-

tion in ad hoc wireless sensor networks. IEEE Transactions on Signal Processing, 59(5):2320

–2330.

Betkaoui, B., Thomas, D. B., and Luk, W. (2010). Comparing performance and energy effi-

ciency of FPGAs and GPUs for high productivity computing. Proceedings of International

Conference on Field-Programmable Technology (FPT), pages 94–101.

Bindel, D., Demmel, J., Kahan, W., and Marques, O. (2002). On computing givens rotations

reliably and efficiently. ACM Transaction on Mathematical Software, 28(2):206–238.

Blache, P., Rabah, H., and Amira, A. (2012). High level prototyping and FPGA implementation

of the orthogonal matching pursuit algorithm. Proceedings of International Conference on

Information Science, Signal Processing and their Applications, pages 1336–1340.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022.

Bouwmeester, H., Jacquelin, M., Langou, J., and Robert, Y. (2011). Tiled QR factorization

algorithms. Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC).

Brent, R. P. and Luk, F. T. (1982). A systolic architecture for the Singular Value Decomposi-

tion. Technical report, Ithaca, NY, USA.

www.manaraa.com

164

Brent, R. P., Luk, F. T., and Loan, C. V. (1985). Computation of the Singular Value De-

composition using mesh-connected processors. Journal of VLSI Computer Systems, pages

243–270.

Brewer, T. M. (2010). Instruction set innovations for the Convey HC-1 computer. IEEE Micro,

30(2):70–79.

Bruckstein, A. M., Donoho, D. L., and Elad, M. (2009). From sparse solutions of systems of

equations to sparse modeling of signals and images. Journal of SIAM Review, 51(1):34–81.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. (2009). A class of parallel tiled linear

algebra algorithms for multicore architectures. Journal of Parallel Computing, 35(1):38–53.

Byna, S., Meng, J., Raghunathan, A., Chakradhar, S., and Cadambi, S. (2010). Best-effort

semantic document search on GPUs. pages 86–93.

Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., and Graf, H. P. (2010). A pro-

grammable parallel accelerator for learning and classification. pages 273–284.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis?

Journal of the ACM, 58(3):11:1–11:37.

Cavanagh, J. M., Potok, T. E., and Cui, X. (2009). Parallel Latent Semantic Analysis using

a Graphics Processing Unit. Proceedings of the Annual Conference Companion on Genetic

and Evolutionary Computation Conference, pages 2505–2510.

Chan, T. F. (1982). An improved algorithm for computing the Singular Value Decomposition.

Journal of ACM Transactions on Mathematical Software, 8(1):72–83.

Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J. (2008). Accelerating compute-

intensive applications with GPUs and FPGAs. Proceedings of the Symposium on Application

Specific Processors, pages 101–107.

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by basis

pursuit. Journal of SIAM Review, 43(1):129–159.

www.manaraa.com

165

Chen, X., Ren, L., Wang, Y., and Yang, H. (2015). GPU-accelerated sparse LU factorization

for circuit simulation with performance modeling. Journal of IEEE Transactions on Parallel

and Distributed Systems, 26(3):786–795.

Chen, X., Wang, Y., and Yang, H. (2013). Nicslu: An adaptive sparse matrix solver for parallel

circuit simulation. Journal of IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 32(2):261–274.

Chen, Y., Wang, L., and Dong, M. (2010). Non-negative matrix factorization for semisupervised

heterogeneous data coclustering. Journal of IEEE Transactions on Knowledge and Data

Engineering, 22(10):1459–1474.

Cleveland Ashcraft, C., Grimes, R. G., Lewis, J. G., Peyton, B. W., Simon, H. D., and Bjørstad,

P. E. (1987). Progress in sparse matrix methods for large linear systems on vector super-

computers. International Journal of High Performance Computing Applications, 1(4):10–30.

Constantine, P. G., Gleich, D. F., Hou, Y., and Templeton, J. (2014). Model reduction with

mapreduce-enabled tall and skinny Singular Value Decomposition. SIAM Journal on Scien-

tific Computing, 36(5).

Convey Computer (2012). Convey: Better computing for better analytics. Technical report.

Convey Computer HC-2 (2012). The Convey HC-2 computer architecture overview. White

paper.

Convey Computer PDK (2012). Convey Personality Development Kit Reference Manual.

Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. (2001). Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition.

Cosoroaba, A. and Rivoallon, F. (2006). Achieving higher system performance with the Virtex-5

family of FPGAs. Technical report.

Cunningham, K., Nagvajara, P., and Johnson, J. (2011). Reconfigurable multicore architecture

for power flow calculation. Proceedings of North American Power Symposium (NAPS), pages

1–7.

www.manaraa.com

166

Dai, J., Xu, W., Zhang, J., and Chang, C. (2015). Homotopy algorithm for `1-norm minimiza-

tion problems. IET Signal Processing, 9(1):1–9.

Davis, T. A. (2004). Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern Multifrontal

Method. Journal of ACM Transaction on Mathematical Software, 30(2):196–199.

Davis, T. A. and Hu, Y. (2011). The University of Florida sparse matrix collection. Journal

of ACM Transaction on Mathematical Software, 38(1):1:1–1:25.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).

Indexing by Latent Semantic Analysis. Journal of the American society for information

science, 41(6):391–407.

Demmel, J., Gilbert, J., and Li, X. (1999). An asynchronous parallel supernodal algorithm for

sparse Gaussian elimination. SIAM Journal on Matrix Analysis and Applications, 20(4):915–

952.

Demmel, J. and Kahan, W. (1990). Accurate singular values of bidiagonal matrices. SIAM

Journal on Science and Statistical Computing, 11(5):873–912.

Dongarra, J., Faverge, M., Herault, T., Langou, J., and Robert, Y. (2012). Hierarchical QR

factorization algorithms for multi-core cluster systems. Proceedings of the IEEE International

Symposium on Parallel Distributed Processing (IPDPS).

Donoho, D. and Tsaig, Y. (2008). Fast solution of `1-norm minimization problems when the

solution may be sparse. Journal of IEEE Transactions on Information Theory, 54(11):4789–

4812.

Drmac, Z. (1997). Implementation of Jacobi Rotations for accurate singular value computation

in floating point arithmetic. SIAM Journal on Scientific Computing, 18(4):1200–1222.

Duff, I. S. and Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric

linear. Journal of ACM Transaction on Mathematical Software, 9(3):302–325.

www.manaraa.com

167

Echman, F. and Owall, V. (2005). A scalable pipelined complex valued matrix inversion archi-

tecture. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),

5:4489–4492.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Journal

of Annals of Statistics, 32:407–499.

Eick, S., Lockwood, J., Loui, R., Levine, A., Mauger, J., Weishar, D., Ratner, A., and Byrnes,

J. (2006). Hardware accelerated algorithms for semantic processing of document streams.

Proceedings of IEEE Aerospace Conference.

El-Amawy, A. and Dharmarajan, K. R. (1989). Parallel VLSI algorithm for stable inversion of

dense matrices. Journal of Computers and Digital Techniques, 136(6):575–580.

Fang, Y., Chen, L., Wu, J., and Huang, B. (2011). Gpu implementation of orthogonal matching

pursuit for compressive sensing. Proceedings of International Conference on Parallel and

Distributed Systems (ICPADS), pages 1044–1047.

Figueiredo, M., Nowak, R., and Wright, S. (2007). Gradient projection for sparse reconstruc-

tion: Application to compressed sensing and other inverse problems. IEEE Journal of Selected

Topics in Signal Processing, 1(4):586–597.

Fowers, J., Brown, G., Cooke, P., and Stitt, G. (2012). A performance and energy compar-

ison of FPGAs, GPUs, and Multicores for sliding-window applications. Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA), pages

47–56.

Gabbay, J. E. and Scott, W. R. (2012). A simple method for computing discrete spectrum

relaxations of body of revolution targets using Eigenvalue Decomposition. Proceedings of

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 582 –585.

G̊artner, K. (2004). Solving unsymmetric sparse systems of linear equations with PARDISO.

Journal of Future Generation Computer Systems, 20:475–487.

www.manaraa.com

168

Gee, K. R. (2003). Using Latent Semantic Indexing to filter spam. Proceedings of the ACM

Symposium on Applied Computing, pages 460–464.

Gentleman, W. M. (1975). Error analysis of QR Decompositions by Givens transformations.

Journal of Linear Algebra and its Applications, 10:189–197.

Georghiades, A., Belhumeur, P., and Kriegman, D. (2001). From few to many: Illumination

cone models for face recognition under variable lighting and pose. IEEE Transaction on

Pattern Analysis and Machine Intelligence, 23(6):643–660.

Glaskowsky, P. N. (2009). NVidia fermi: The first complete GPU computing architecture.

Technical report.

Golub, G. and Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a

Matrix. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical

Analysis, 2(2):205–224.

Golub, G. and Reinsch, C. (1970). Singular Value Decomposition and least squares solutions.

Numerische Mathematik, 14(5):403–420.

Golub, G. and Van Loan, C. (1996). Matrix computations (3rd ed.). Johns Hopkins University

Press, Baltimore, MD, USA.

Graf, H. P., Cadambi, S., Jakkula, V., Sankaradass, M., Cosatto, E., Chakradhar, S., and

Dourdanovic, I. (2009). A massively parallel digital learning processor. Advances in Neural

Information Processing Systems 21, pages 529–536.

Gu, M. and Eisenstat, S. C. (1995). A divide-and-conquer algorithm for the bidiagonal SVD.

SIAM Journal on Matrix Analysis and Applications, 16(1):79–92.

Günther, F., Dudschig, C., and Kaup, B. (2014). LSAfun - an R package for computations

based on latent semantic analysis. Journal of Behavior Research Methods, pages 1–15.

Haidar, A., Kurzak, J., and Luszczek, P. (2013). An improved parallel singular value algorithm

and its implementation for multicore hardware. Proceedings of SC13: International Confer-

www.manaraa.com

169

ence for High Performance Computing, Networking, Storage and Analysis (SC ’13), pages

90:1–90:12.

Hamada, T., Benkrid, K., Nitadori, K., and Taiji, M. (2009). A comparative study on ASIC,

FPGAs, GPUs and General Purpose Processors in the O(N2) gravitational N-body simula-

tion. Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems, pages

447–452.

Harteneck, M. and Stewart, R. W. (1998). Adaptive iir filtering using QR matrix Decomposi-

tion. IEEE Transactions on Signal Processing, 46(9):2562–2565.

Hauck, S. and DeHon, A. (2007). Reconfigurable Computing: The Theory and Practice of

FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Heinecke, A., Klemm, M., and Bungartz, H. J. (2012). From GPGPU to many-core: Nvidia

Fermi and Intel many integrated core architecture. Computing in Science Engineering,

14(2):78–83.

Herbordt, M., Gu, Y., VanCourt, T., Model, J., Sukhwani, B., and Chiu, M. (2008). Computing

models for FPGA-based accelerators. Computing in Science Engineering, 10(6):35–45.

Hestenes, M. (1958). Inversion of matrices by biorthogonalization and related results. Journal

of the Society for Industrial and Applied Mathematics, 6(1):51–90.

Hofmann, T. (1999). Probabilistic Latent Semantic Indexing. Proceedings of the International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 50–

57.

Jeffers, J. and Reinders, J. (2013). Intel Xeon Phi Coprocessor High Performance Programming.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Joao, Z., Mzyece, M., and Kurien, A. (2009). Matrix decomposition methods for the im-

provement of data mining in telecommunications. Proceedings of IEEE Vehicular Technology

Conference Fall, pages 1–5.

www.manaraa.com

170

Kapre, N. and DeHon, A. (2009). Parallelizing sparse matrix solve for SPICE circuit simulation

using FPGAs. Proceedings of International Conference on Field-Programmable Technology,

pages 190–198.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. (2011). GPUs and the

future of parallel computing. IEEE Micro, 31(5):7–17.

Kerr, A., Campbell, D., and Richards, M. (2009). QR Decomposition on GPUs. Proceedings

of Workshop on General Purpose Processing on Graphics Processing Units (GPGPU).

Kestur, S., Davis, J. D., and Williams, O. (2010). BLAS comparison on FPGA, CPU and

GPU. Proceedings of the IEEE Annual Symposium on VLSI (ISVLSI), pages 288–293.

Kirk, D. B. and Hwu, W.-m. W. (2010). Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Kojima, M., Mizuno, S., and Megiddo, N. (1990). Theoretical convergence of large-step primal-

dual interior point algorithms for linear programming. Technical Report RJ 7872, IBM US

Research Centers (Yorktown,San Jose,Almaden, US).

Kotas, C. and Barhen, J. (2011). Singular Value Decomposition utilizing parallel algorithms

on graphical processors. Proceedings of OCEANS 2011, pages 1–7.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. Proceedings of the Second

Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492.

Kuon, I., Tessier, R., and Rose, J. (2008). Fpga architecture: Survey and challenges. Journal

of Foundations and Trends in Electronic Design Automation, 2(2):135–253.

Lahabar, S. and Narayanan, P. (2009). Singular Value Decomposition on GPU using CUDA.

Proceedings of IEEE International Symposium on Parallel Distributed Processing, pages 1–10.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An introduction to latent semantic

analysis. Journal of Discourse Processes, (25):259–284.

www.manaraa.com

171

Ledesma-Carrillo, L., Cabal-Yepez, E., de J Romero-Troncoso, R., Garcia-Perez, A., Osornio-

Rios, R., and Carozzi, T. (2011). Reconfigurable FPGA-Based unit for Singular Value Decom-

position of large m x n matrices. Proceedings of International Conference on Reconfigurable

Computing and FPGAs (ReConFig), pages 345–350.

Lee, K., Ho, J., and Kriegman, D. (2005). Acquiring linear subspaces for face recognition

under variable lighting. IEEE Transaction on Pattern Analysis and Machine Intelligence,

27(5):684–698.

Leoncini, M., Manzini, G., and Margara, L. (1996). Parallel complexity of Householder QR

factorization. Proceedings of the Fourth Annual European Symposium on Algorithms (ESA).

Liao, R., Fernandess, Y., Tavernier, K., Taylor, G., and Irving, M. (2012). Recognition of

partial discharge patterns. Proceedings of IEEE Power and Energy Society General Meeting,

pages 1–8.

Lindholm, E. and Oberman, S. (2007). Nvidia geforce 8800 GPU. Proceedings of Hot Chips,

19.

Liu, Z. and McCanny, J. V. (2003). Implementation of adaptive beamforming based on QR

Decomposition for CDMA. Proceedings of IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2:II–609–12 vol.2.

Luebke, D. and Humphreys, G. (2007). How GPUs work. Computer, 40(2):96–100.

Ma, W., Kaye, M. E., Luke, D. M., and Doraiswami, R. (2006). An FPGA-Based Singular Value

Decomposition processor. Proceedings of Canadian Conference on Electrical and Computer

Engineering (CCECE), pages 1047–1050.

Majumdar, A., Cadambi, S., Chakradhar, S., and Graf, H. (2011). A parallel accelerator for

semantic search. pages 122–128.

Maletic, J. and Marcus, A. (2000). Using Latent Semantic Analysis to identify similarities in

source code to support program understanding. Proceedings of IEEE International Confer-

ence on Tools with Artificial Intelligence, pages 46–53.

www.manaraa.com

172

Malioutov, D., Cetin, M., and Willsky, A. (2005). Homotopy continuation for sparse signal

representation. 5:v/733–v/736 Vol. 5.

Martin, C. D. and Porter, M. A. (2012). The extraordinary SVD. The American Mathimatical

Monthly, 119(10):838–852.

Meher, P., Valls, J., Juang, T.-B., Sridharan, K., and Maharatna, K. (2009). 50 years of

CORDIC: algorithms, architectures, and applications. IEEE Transactions on Circuits and

Systems I, 56(9):1893–1907.

Meng, J., Chakradhar, S., and Raghunathan, A. (2009). Best-effort parallel execution frame-

work for recognition and mining applications. Proceedings of IEEE International Symposium

on Parallel Distributed Processing, pages 1–12.

Microprocessor Standards Committee of the IEEE Computer Society (2008). Ieee standard

for floating-point arithmetic. Technical report, Microprocessor Standards Committee of the

IEEE Computer Society, New York, USA.

Mu, Y., Dong, J., Yuan, X., and Yan, S. (2011). Accelerated low-rank visual recovery by random

projection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2609–2616.

Nurvitadhi, E., Weisz, G., Wang, Y., Hurkat, S., Nguyen, M., Hoe, J. C., Martnez, J. F., and

Guestrin, C. (2014). Graphgen: An fpga framework for vertex-centric graph computation.

pages 25–28.

Okša, G. and Vajteršic, M. (2009). Parallel SVD computing in the latent semantic indexing

applications for data retrieval. Parallel Computing, pages 359–395.

Pati, Y., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching pursuit: recursive

function approximation with applications to wavelet decomposition. Asilomar Conference

on Signals, Systems and Computers, 1:40–44.

www.manaraa.com

173

Plumbley, M. D. (2006). Recovery of sparse representations by polytope faces pursuit. Pro-

ceedings of International Conference on Independent Component Analysis and Blind Source

Separation, pages 206–213.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical

Recipes 3rd ed.: The Art of Scientific Computing. Cambridge Univ. Press, New York, NY.

Qiu, C. and Vaswani, N. (2011). ReProCS: A missing link between recursive robust PCA and

recursive sparse recovery in large but correlated noise. The Computing Research Repository,

abs/1106.3286.

Rabah, H., Amira, A., Mohanty, B., Almaadeed, S., and Meher, P. (2015). FPGA implementa-

tion of orthogonal matching pursuit for compressive sensing reconstruction. Journal of IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 23(10):2209–2220.

Rafique, A., Kapre, N., and Constantinides, G. (2012). Enhancing performance of tall-skinny

QR factorization using FPGAs. Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 443–450.

Rahman, R. (2013). Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for Appli-

cation Developers. Apress, Berkely, CA, USA, 1st edition.

Redif, S., McWhirter, J. G., and Weiss, S. (2011). Design of FIR paraunitary filter banks for

subband coding using a polynomial Eigenvalue Decomposition. IEEE Transactions on Signal

Processing, 59(11):5253 –5264.

Řeh̊uřek, R. and Sojka, P. (2011). Gensim - statistical semantics in python. Proceedings of

European Conference on Python in Science.

Ren, L., Chen, X., Wang, Y., Zhang, C., and Yang, H. (2012). Sparse LU factorization for

parallel circuit simulation on GPU. Proceedings of Design Automation Conference, pages

1125–1130.

www.manaraa.com

174

Ritala, M., Kukli, K., Rahtu, A., Räisänen, P. I., Leskelä, M., Sajavaara, T., and Keinonen, J.

(2000). Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources.

Science, 288(5464):319–321.

Rus, V., Lintean, M. C., Banjade, R., Niraula, N. B., and Stefanescu, D. (2013). SEMILAR:

the semantic similarity toolkit. Proceedings of Annual Meeting of the Association for Com-

putational Linguistics, pages 163–168.

Shia, V., Yang, A., Sastry, S., Wagner, A., and Ma, Y. (2011). Fast `1-minimization and par-

allelization for face recognition. Proceedings of Forty Fifth Asilomar Conference on Signals,

Systems and Computers (ASILOMAR), pages 1199–1203.

Siddhartha and Kapre, N. (2014a). Breaking sequential dependencies in FPGA-based sparse

LU factorization. Proceedings of IEEE International Symposium on Field-Programmable

Custom Computing Machines, pages 60–63.

Siddhartha and Kapre, N. (2014b). Heterogeneous dataflow architectures for FPGA-based

sparse LU factorization. Proceedings of International Conference on Field Programmable

Logic and Applications, pages 1–4.

Sjöstrand, K. (2005). Matlab implementation of LASSO, LARS, the elastic net and SPCA.

Version 2.0.

Soliman, M. (2011). Efficient implementation of QR Decomposition on Intel multi-core proces-

sors. Prceedings of the Seventh International Computer Engineering Conference (ICENCO),

pages 25–30.

Strumpen, V., Hoffmann, H., and Agarwal, A. (2003). A stream algorithm for the SVD.

Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA.

Studer, C., Blosch, P., Friedli, P., and Burg, A. (2007). Matrix decomposition architecture for

mimo systems: Design and implementation trade-offs. Proceedings of Asilomar Conference

on Signals, Systems and Computers, pages 1986–1990.

www.manaraa.com

175

Tai, Y.-G., Psarris, K., and Lo, C.-T. D. (2011). Synthesizing tiled matrix decomposition

on FPGAs. Proceedings of the International Conference on Field Programmable Logic and

Applications (FPL), pages 464–469.

Tomov, S., Nath, R., Ltaief, H., and Dongarra, J. (2010). Dense linear algebra solvers for

multicore with GPU accelerators. Proceedings of the IEEE International Symposium on

Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–8.

Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM: Society for Industrial

and Applied Mathematics.

Vachranukunkiet, P. (2007). Power Flow Computation Using Field Programmable Gate Arrays.

Drexel University.

Vanteru, B., Shaik, J., and Yeasin, M. (2008). Semantically linking and browsing PubMed

abstracts with gene ontology. Journal of BMC Genomics, 9(Suppl 1):S10.

Villarreal, J., Park, A., Atadero, R., Najjar, W., and Edwards, G. (2010). Programming the

Convey HC-1 with ROCCC 2.0. Proceedings of Workshop on the Intersections of Computer

Architecture and Reconfigurable Logic.

Walker, H. F. (1988). Implementation of the GMRES method using Householder transforma-

tions. SIAM Journal on Scientific and Statistical Computing, 9(1):152–163.

Wang, X., Jones, P., and Zambreno, J. (2014). A reconfigurable architecture for QR Decompo-

sition using a hybrid approach. Proceedings of IEEE Computer Society Annual Symposium

on VLSI, pages 541–546.

Wang, X., Jones, P. H., and Zambreno, J. (2016). A configurable architecture for sparse LU

Decomposition on matrices with arbitrary patterns. SIGARCH Computer Architecture News,

43(4):76–81.

Wang, X. and Leeser, M. (2009). A truly two-dimensional systolic array FPGA implementation

of QR Decomposition. ACM Transaction on Embedded Computing System, 9(1):1–17.

www.manaraa.com

176

Wang, X. and Zambreno, J. (2014a). An efficient architecture for floating-point Eigenvalue De-

composition. Proceedings of IEEE Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 64–67.

Wang, X. and Zambreno, J. (2014b). An FPGA implementation of the Hestenes-Jacobi algo-

rithm for Singular Value Decomposition. pages 220–227.

Wen, Z., Zhongpan, Q., and Zhijun, S. (2010). FPGA implementation of efficient fft algorithm

based on complex sequence. IEEE International Conference on Intelligent Computing and

Intelligent Systems, 2:614–617.

Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approx-

imation. Journal of IEEE Transactions on Signal Processing, 57(7):2479–2493.

Wu, G., Xie, X., Dou, Y., Sun, J., Wu, D., and Li, Y. (2012). Parallelizing sparse LU De-

composition on FPGAs. Proceedings of International Conference on Field-Programmable

Technology (FPT), pages 352–359.

Xilinx Inc. (2012). Logicore IP Floating-point operator data sheet. Technical report.

Xu, H., Caramanis, C., and Sanghavi, S. (2012). Robust PCA via outlier pursuit. IEEE

Transactions on Information Theory, 58(5):3047–3064.

Xue, P., Bae, K., Kim, K., and Yang, H. (2013). Progressive equalizer matrix calculation

using QR Decomposition in MIMO-OFDM systems. Proceedings of the IEEE Consumer

Communications and Networking Conference (CCNC), pages 593–596.

Yang, A., Ganesh, A., Sastry, S., and Ma, Y. (2010). Fast `1-minimization algorithms and

an application in robust face recognition: A review. Technical report, EECS Department,

University of California, Berkeley.

Yang, A. Y., Zhou, Z., Balasubramanian, A. G., Sastry, S. S., and Ma, Y. (2013). Fast `1 -

minimization algorithms for robust face recognition. IEEE Transactions on Image Processing,

22(8):3234–3246.

www.manaraa.com

177

Yang, J. and Zhang, Y. (2011). Alternating direction algorithms for `1-problems in compressive

sensing. SIAM Journal on Scientific Computing, 33(1):250–278.

Yang, Y.-H. E. and Prasanna, V. K. (2010). High throughput and large capacity pipelined

dynamic search tree on FPGA. pages 83–92.

Yu, D. and Wang, H. (1990). A new parallel LU Decomposition method. Journal of IEEE

Transactions on Power Systems, 5(1):303–310.

Zhang, Y., Shalabi, Y. H., Jain, R., Nagar, K. K., and Bakos, J. D. (2009). FPGA vs.

GPU for sparse matrix vector multiply. Proceedings of International Conference on Field-

Programmable Technology (FPT), pages 255–262.

	2016
	Using reconfigurable computing technology to accelerate matrix decomposition and applications
	Xinying Wang
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Problem: matrix decomposition
	1.2 Solution: FPGA and reconfigurable computing technology
	1.3 Contributions: FPGA-based accelerators for matrix decomposition and applications

	2. BACKGROUND
	2.1 Matrix decomposition and applications
	2.1.1 Eigenvalue Decomposition
	2.1.2 Singular Value Decomposition
	2.1.3 QR Decomposition
	2.1.4 LU Decomposition

	2.2 FPGA and reconfigurable computing technology
	2.2.1 Computational characteristic
	2.2.2 Flexibility
	2.2.3 Reconfigurability
	2.2.4 Fine-grained
	2.2.5 Energy efficiency

	3. AN EFFICIENT ARCHITECTURE FOR FLOATING-POINT EIGENVALUE DECOMPOSITION
	3.1 Abstract
	3.2 Introduction
	3.3 Theoretical background
	3.3.1 Singular Value /Eigenvalue Decomposition (SVD/EVD)
	3.3.2 Jacobi rotations

	3.4 Related Work
	3.5 The partitioned EVD computation algorithm
	3.6 The EVD architecture
	3.6.1 Diagonal Jacobi rotation component
	3.6.2 Off-diagonal single update component
	3.6.3 Off-diagonal double update component

	3.7 Experiments and evaluations
	3.7.1 Implementation and experimental setup
	3.7.2 Performance analysis
	3.7.3 Convergence analysis

	3.8 Conclusion

	4. AN FPGA IMPLEMENTATION OF THE HESTENES-JACOBI ALGORITHM FOR SINGULAR VALUE DECOMPOSITION
	4.1 Abstract
	4.2 Introduction
	4.3 Theoretical background
	4.3.1 Singular Value Decomposition (SVD)
	4.3.2 Classic two-sided Jacobi rotations
	4.3.3 Hestenes-Jacobi method

	4.4 Related work
	4.5 Modified Hestenes-Jacobi algorithm
	4.6 Our Hestenes-Jacobi SVD architecture
	4.6.1 Hestenes preprocessor
	4.6.2 Jacobi rotation component
	4.6.3 Update operator
	4.6.4 The cyclic order for vector pairing

	4.7 Experiments and evaluations
	4.7.1 Implementation and experimental setup
	4.7.2 Performance analysis
	4.7.3 Convergence analysis

	4.8 Conclusion

	5. A RECONFIGURABLE ARCHITECTURE FOR QR DECOMPOSITION USING A HYBRID APPROACH
	5.1 Abstract
	5.2 Introduction
	5.3 Theoretical background
	5.3.1 QR Decomposition
	5.3.2 Householder transformation
	5.3.3 Givens rotation

	5.4 Related work
	5.5 Hybrid QR algorithm
	5.6 Our architecture for QR Decomposition
	5.6.1 Preprocessing component
	5.6.2 Factorization component
	5.6.3 Matrix update component
	5.6.4 I/O considerations

	5.7 Implementation and evaluation
	5.7.1 Implementation and experimental setup
	5.7.2 Performance analysis

	5.8 Conclusion

	6. A CONFIGURABLE ARCHITECTURE FOR SPARSE LU DECOMPOSITION ON MATRICES WITH ARBITRARY PATTERNS
	6.1 Abstract
	6.2 Introduction
	6.3 Theoretical background
	6.3.1 Sparse LU Decomposition with pivoting
	6.3.2 Algorithms for sparse LU Decomposition

	6.4 Related work
	6.5 The parallel sparse LU Decomposition algorithm
	6.6 The sparse LU Decomposition architecture
	6.6.1 Input
	6.6.2 Update
	6.6.3 Pivot

	6.7 Experiments and evaluations
	6.7.1 Implementation and experimental setup
	6.7.2 Performance analysis

	6.8 Conclusions

	7. PARALLELIZING LATENT SEMANTIC INDEXING USING FPGA
	7.1 Abstract
	7.2 Introduction
	7.3 Theoretical background
	7.3.1 Latent Semantic Indexing (LSI)
	7.3.2 2-3 tree structure

	7.4 Related work
	7.5 Algorithm for Latent Semantic Indexing
	7.6 Proposed architecture for Latent Semantic Indexing
	7.6.1 Vector reduction component
	7.6.2 Jacobi rotation component
	7.6.3 Update component
	7.6.4 2-3 tree sorting component

	7.7 Implementation and Experimental Evaluation
	7.7.1 Implementation and experimental setup
	7.7.2 Performance analysis

	7.8 Conclusion

	8. A CONFIGURABLE ARCHITECTURE TO ACCELERATE HOMOTOPY 1-MINIMIZATION
	8.1 Abstract
	8.2 Introduction
	8.3 Theoretical background
	8.3.1 1-norm minimization problem
	8.3.2 Homotopy method for 1-norm minimization

	8.4 Related work
	8.5 Modified Homotopy algorithm for 1-norm minimization
	8.6 Configurable architecture for 1-norm minimization
	8.6.1 The Matrix-vector computation component
	8.6.2 The Matrix factorization component

	8.7 Implementation and Evaluation
	8.7.1 Implementation and Experimental Setup
	8.7.2 Performance analysis

	8.8 Conclusion and Future Work

	9. FUTURE WORK DISCUSSION
	9.1 Hybrid architecture
	9.2 Application-specific architecture

	10. CONCLUSION
	A. HIGH PERFORMANCE COMPUTING PROCESSORS AND CONVEY HYBRID-CORE COMPUTING PLATFORM
	A.1 High performance accelerators
	A.1.1 GPUs
	A.1.2 Xeon Phi coprocessor
	A.1.3 FPGA and reconfigurable computing technology

	A.2 Convey hybrid-core computing platform

	B. HOMOTOPY 1-NORM MINIMIZATION ALGORITHM
	B.1 Initial setup process
	B.2 Update direction computation process
	B.3 Step size computation process
	B.4 Support set update process
	B.5 Cholesky rank-1 update process
	B.6 Stop criterion evaluation process

	BIBLIOGRAPHY

